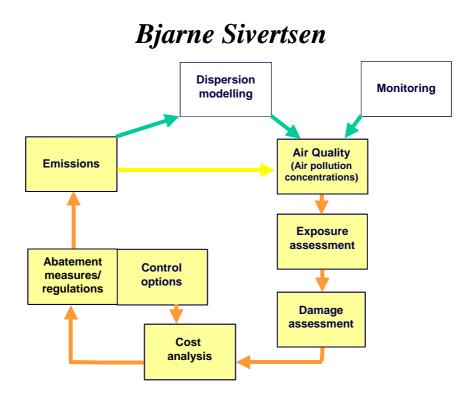
NILU
 F 11/2006


 Reference:
 O-106094

 Date:
 Sept. 2006

Hanoi Urban Transport and Development Project Air Quality Management Sub-component

Air Quality Management System for Hanoi; Monitoring, Databases, Emissions, Models and Organisation.

Presentations at a Seminar Hanoi 14 September 2006

Norwegian Institute for Air Research, www.NILU.no

Air Quality Management System for Hanoi

Introduction

The seminar presented a summary of the air quality management system needed to perform air quality planning in urban areas such as Hanoi. Presentations included the basic platform established for the air quality databases, emission inventories as well as the air pollution modelling. The future applications of the system used for air quality planning was presented based on results from other cities in Asia.

The NILU developed AirQUIS platform has been used world wide for air quality assessment and planning. Some of the examples used in the seminar were based on the application of AirQUIS. Future solutions for Hanoi were presented and at the ends we also included a presentation of organisational set-up and operations of the air quality management system as well as some input to the institutional framework and involvement of relevant agencies.

Air Quality Monitoring

Five fixed air quality monitoring stations are being operated by 4 operators and by four different types of instruments in Hanoi. It has been stated that: "The management of monitoring stations and monitoring activities is not concentrated at one organization, management responsibilities are vested in many different organizations, and their cooperation is not effective. Technical infrastructure is lagging behind while the investment is still limited and spread; labour resource is wastefully used ".

The present situation was presented as a background for a proposed future network of air quality monitoring stations. Data from this network will then in the future represent the basis for air quality assessment and planning. The presentation may also represent a background for further discussions in Hanoi.

Emission inventories

Hanoi's vehicle fleet is the second largest in Vietnam, after Ho Chi Minh City (ADB, 2002). The number of vehicles has been increasing steadily during the last few years. As of 2002 Shah and Saikawa estimated that there were about 1.3 million motorcycles in Hanoi. Later estimates presented by Khaliquzzaman have indicated 1.66 million motorcycles and almost 170 000 other vehicles in Hanoi.

A GIS based system for the emission inventory data should be established at DONREH. These emission data should further be prepared to work directly as input to the dispersion models for Hanoi. NILU has considered the use of the AirQUIS emission inventory module or similar systems for updating the emission inventory for Hanoi in the future. The tools and templates for collecting emission data will be presented in the seminar.

The AirQUIS emission module includes templates for import of source data and emission data as well as a modern emission inventory database with emission models. The emission data are normally divided into:

- Point sources (stacks, industries, power plants)
- Line sources (traffic)
- Area sources (domestic burning, diffuse traffic etc.)

Dispersion models

Air pollution dispersion models will have to be added to the system in Hanoi. This will enable concentration estimates, evaluation of different source's relative importance to the total exposure, impact assessment and to perform optimal abatement planning. Models and model applications was briefly introduced in the seminar. For implementation in Hanoi it will be necessary to perform further training and practical work with atmospheric dispersion models.

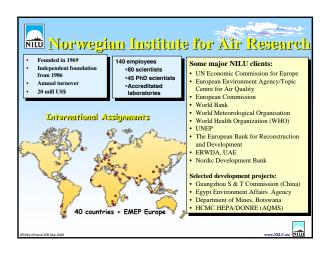
Assessment and planning

When the necessary input data such as air quality, meteorology and emission inventories are in place in one integrated database it will be possible to use the GIS based system for air quality assessment optimal abatement planning. The background and some results from other studies was presented in the seminar.

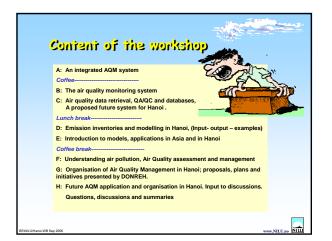
Institutional arrangements

The organisation of air quality management in Hanoi will be a challenge, and was presented and discussed during the seminar. In order to implement the total Air Quality Management Component in Hanoi NILU has suggested that Hanoi should base the development on the decisions already made by the People Committee Decisions on institutional arrangements (158/2005/QD-UB for the establishment of CENMA and 2370/QD-UBND dated May 22, 2006 for the establishment of a Steering Committee. Decision No.101/2003/QDU from August 2003 identified DONREH as the key stakeholder. We will have to specify other agencies that should cooperate with DONREH.

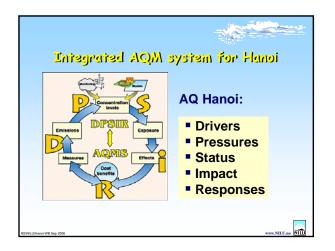
The tasks and work to be undertaken as part of the AQM work in Hanoi may represent the basis for identifying a group of institutions and their role in the future Air Quality Management if Hanoi.

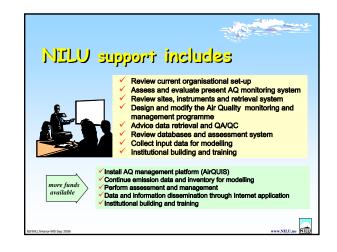

Agenda for the seminar

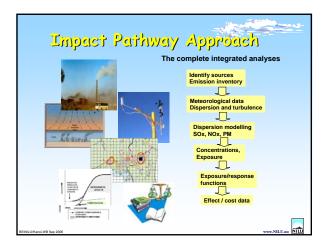
Held in Hanoi, Thursday 14 September 2006

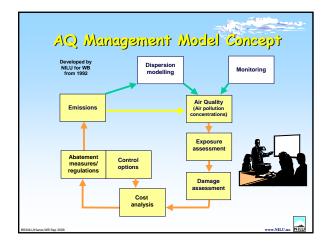

Time	Торіс	
(hr)		Lecturer
09:00	Welcome, presentation from DONREH	Mr Vu Van Hau / Mr Dang Duong <u>Binh</u>
09:15	Hanoi Urban Transport and Development Project, The Air Quality Management Component	Mr Duong Quoc Vinh
09:30	An integrated air quality management system for Hanoi, introduction to the different components	Mr. Bjarne Sivertsen
10:15	Coffee break	
10:30	The air quality monitoring system, monitoring design, data needed, site and equipment selection	Mr. Bjarne Sivertsen
11:30	Air quality data retrieval, QA/QC and databases. A proposed future system for Hanoi.	Mr. The N Thanh
12:00	Lunch break	
13:30	Emission inventories and modelling in Hanoi, (Input- output – examples) The use of templates for collecting input data – data and information needed	Mr. Bjarne Sivertsen Dr Agnes V. Dudek
14:30	Introduction to models, how do they work Model applications (Asia)	Mr. Bjarne Sivertsen
15:00	Coffee break	
15:15	Understanding air pollution, future applications, Air Quality Management and abatement strategies presented based on examples from other cities in Asia	Mr. Bjarne Sivertsen
16:15	Using the system and data dissemination systems in Hanoi including issues to be covered during this Mission and further. Input to discussions	Intro by Mr The N Thanh Mr B Sivertsen
15:45	The organisation of Air Quality Management in Hanoi. Proposals, plans and initiatives from DONREH.	DONREH representative
16:30	Questions, discussions and summaries Final statements	all

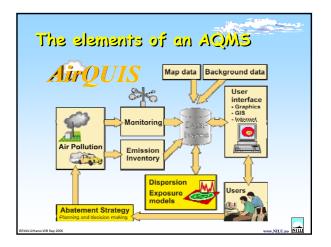
References

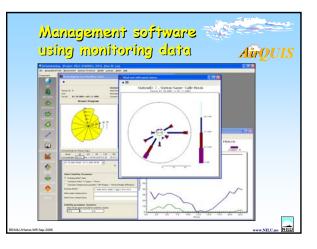

- Sivertsen B. (1997) An on-line monitoring, surveillance and planning system for air quality. Presented at the 10th regional IUAPPA conference, Istanbul, Turkey, 23-26 September 1997. Kjeller (NILU F 12/97)
- Sivertsen, B. (1999) On-line Air Quality Monitoring Systems used in Optimal Abatement Strategy Planning. Presented at the Int. Conf. on Environmental Management, Health and Sustainable Development, Alexandria, Egypt, 22-25 March 1999. Kjeller (NILU F 7/99).
- Sivertsen, B. and Bøhler, T. (2000) On-line Air Quality Management System for Urban Areas in Norway. Presented at the seminar "The air of our cities ... it's everybody's business", Paris, 16-18 February 2000. In: *Proceedings. Paris, Marie de Paris, Environment. Fourth theme, paper D6*, pp. 44-45.
- Sivertsen, B. (2000) Understanding air quality measurements. Kjeller (NILU TR 4/2000).
- Sivertsen, B. and Thanh, T.N. (2004) Ho Chi Minh City Environmental Improvement Project. Air Quality Monitoring Component. Mission 4, April 2004; Status report (QR7-9), Data assessment and training. Kjeller (NILU OR 51/2004).
- Sivertsen, B., Thanh, T.N., Le, K.V. and Vo, D.T. (2004) The air quality monitoring and management system for HCMC, Vietnam, Presented at the Better Air Quality Conference, Agra, India, December 2004. URL: http://www.cleanairnet.org/baq2004/1527/article-59135.html
- Sivertsen, B. (2005) Ho Chi Minh City Environmental Improvement Project. Air Quality Monitoring and Reference Laboratory. MR-1. Reference laboratory; planning and design. Kjeller, NILU (OR 58/2005).
- Sivertsen, B. (2005) An air quality monitoring and management system for Hanoi. Presented at the World Bank meeting in Hanoi, 26 February 2005. (NILU FF 7/2005).
- Sivertsen, B. (2006a) Air quality monitoring programme for Dakar, Result of the design study. Kjeller (NILU OR 37/2006).
- Sivertsen B. and The N. T. (2006a) Support for the Review of Air Quality Management Sub-component for the Hanoi Urban Transport and Development Project, Inception report. Kjeller. (NILU OR 60/2006).
- Sivertsen B. and The N. T. (2006b) Support for the Review of Air Quality Management Sub-component for the Hanoi Urban Transport and Development Project, Final report. Kjeller. (NILU OR 78/2006).
- Sivertsen B. (2006b) Air Quality Management System for Hanoi; Monitoring, Databases, Emissions, Models and Organisation. Kjeller. (NILU F 11/2006).

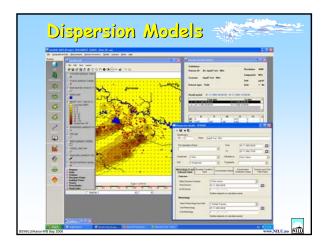


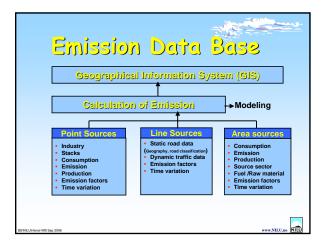


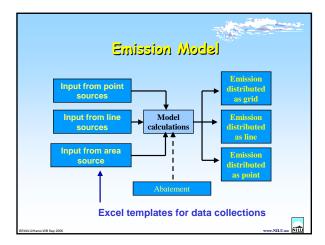


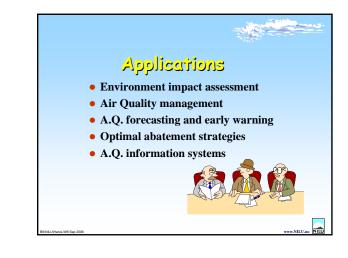


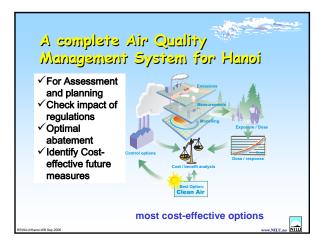


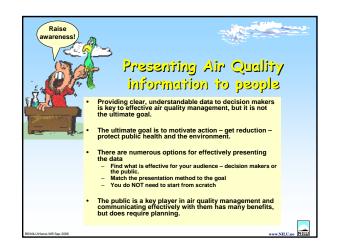


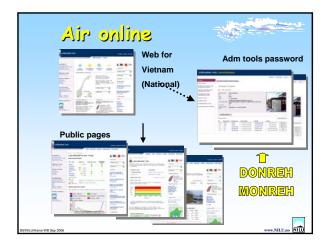


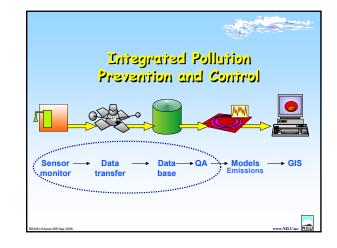


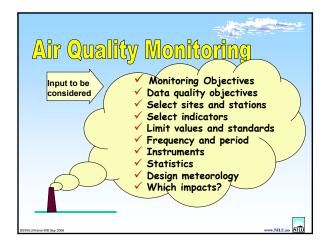


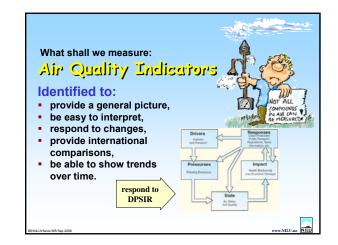


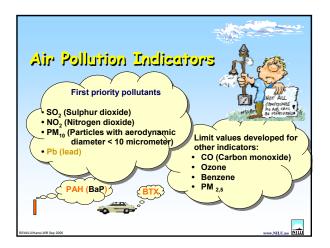


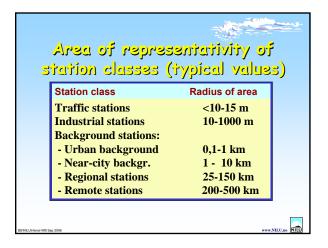


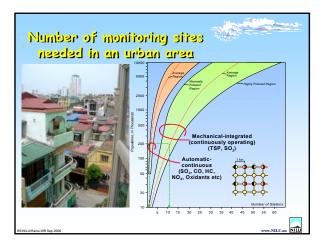


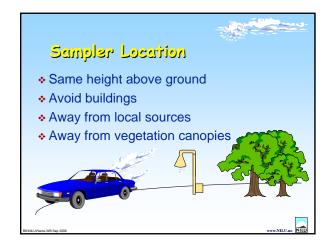


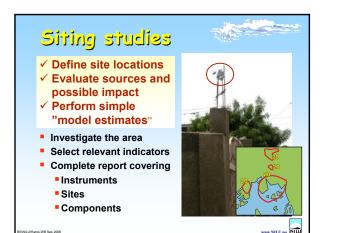


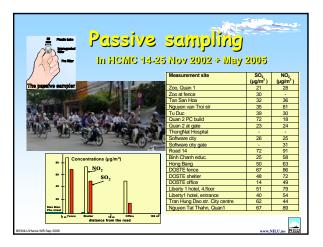


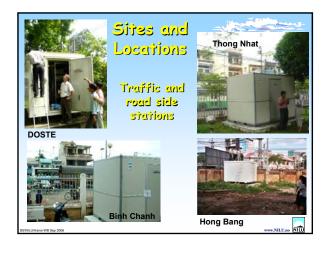


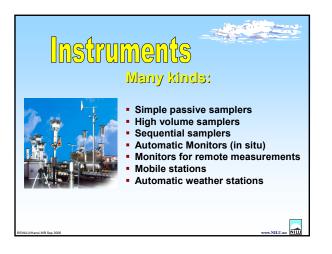


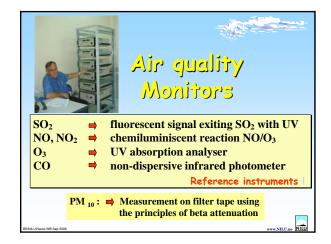


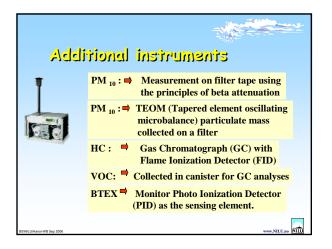

AQ (Suideline	es and	Standard
Pollutant	Averaging Time	WHO (µg/m ³)	TCVN-2005 (µg/m ³)
SO2	Annual Avg.	50	50
	24 Hours	125	125
	1 Hour	500 (10min)	-
со	8 Hours	10 000	10 000
	1 Hour	30 000	30 000
NO ₂	Annual Avg.	40	40
	24 Hours	-	-
	1 Hour	200	200
O3	8 Hours	120	80 (24 h)
	1 Hour	-	120
PM10	Annual Avg.	20	50
	24 Hours	50	150
Pb	Annual	0.5	

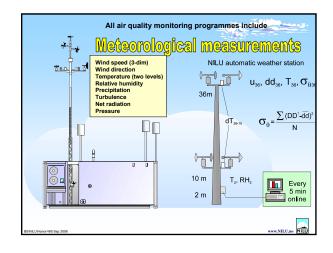

lassificati	es of Monitoring S ion system:	
Type of area	Description	Type of station
Urban	Continuously built-up area	Traffic
Suburban	Largely built-up area: continuous settlement of detached buildings mixed with non-urbanized areas	Industrial Background :
Rural	Areas that not fulfil the criteria for urban/suburban areas	- Near city - Regional - Remote



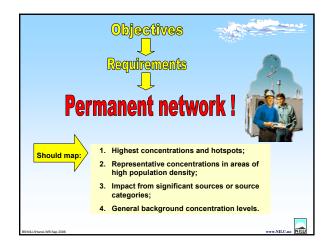


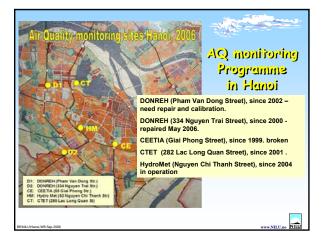


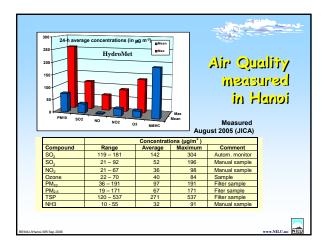


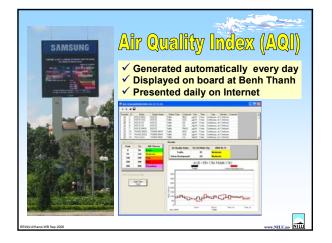


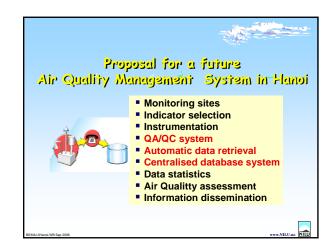
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Typical price (US \$)
Passive sampler	Manual, in situ	After lab analyses	1-30 days	20
Sequential sampler	Manual/ semi-auto, in situ.	After lab analyses	24 h	3000
Monitors	Automatic Continuous, in situ.	Directly, on-line	1h	>15 000
Remote monitoring	Automatic Continuous, path integrated	Directly, on-line	< 1 min	>100 000
BSINEU/Hanoi-WB Sep 2006				www.NILU.no

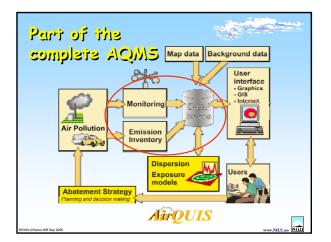


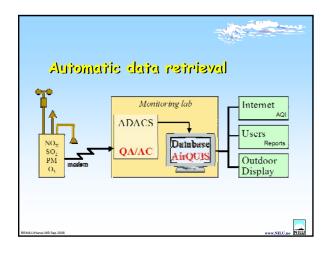


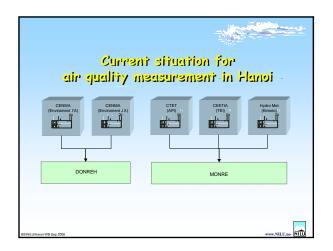


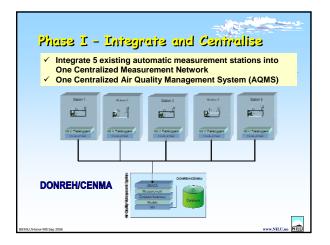


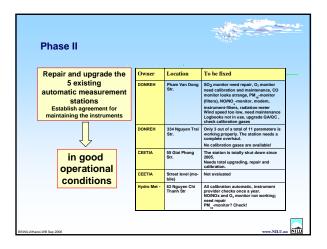


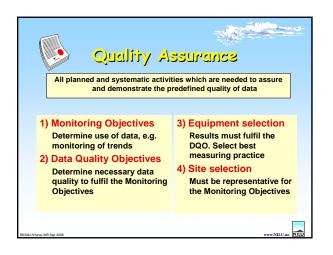


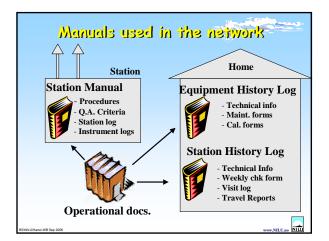


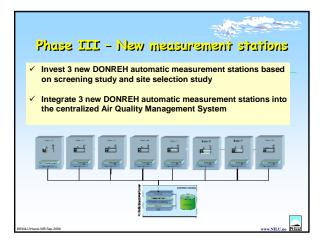


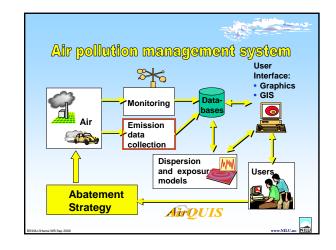


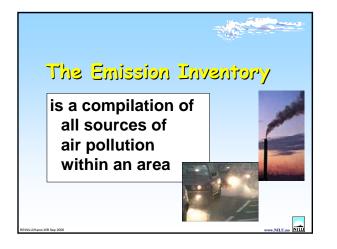












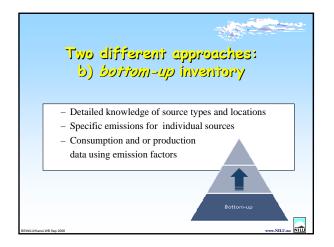
Emission inventories

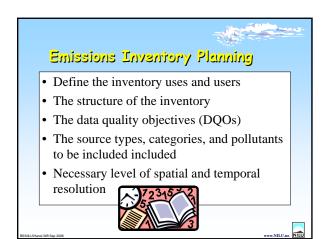
- Complete:
- All sources included
- Consistent:
 - Same definitions applied by all countries. Appropriate and up-to-date emissions factors
- Transparent:
- Contains all information necessary to check how emission estimates are obtained.

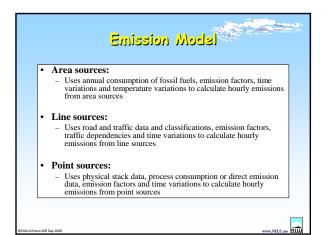
Detailed description of an inventory:

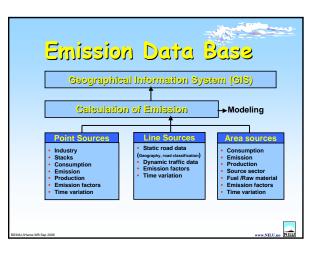
- $Geographic \ area \ ({\it geographic \ domain \ for \ the \ inventory})$
- Pollutants (purpose the inventory)
- Source Categories (Anthropogenic/Natural sources)
- -Modelling (Geographically/time resolution, Pollutant species)
- Spatial resolutions
- Temporal resolution (variability of emissions over time)
- Speciation (Disaggregates into indiv. chemical comp.or groups)
- Base year (reference year)

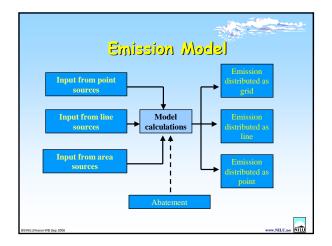
 Two different approaches:

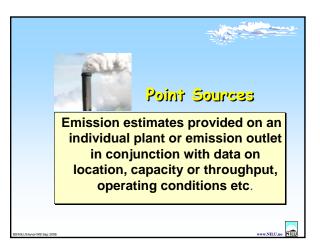

 a) top-clown inventory

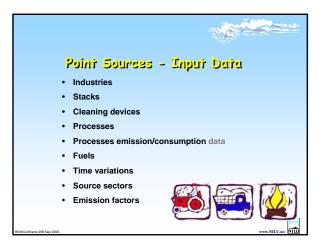

 - Activity statistics

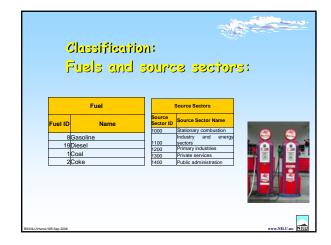

 (consumption, production, vehicle type etc)

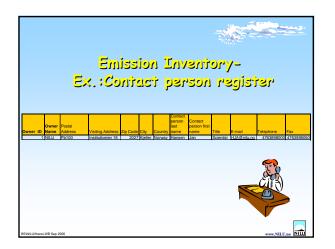

 - Population statistics, land-use and emission factors

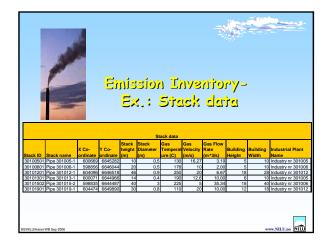

 - Detailed information about location not required

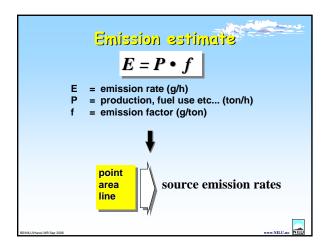


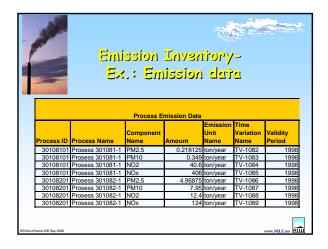




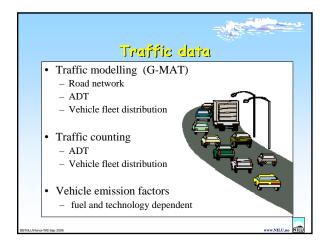


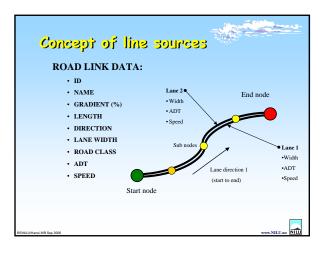


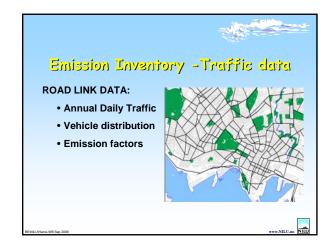


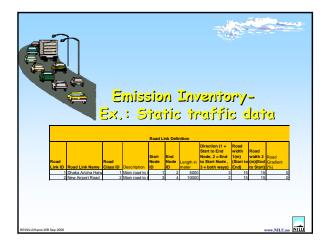

			sion Inventa Istrial plant		ster
			Industrial Plant Register		
	Industrial Plant ID	Name of Industrial Plant	Source sectors Name	Region Name	Owner Name
	301005	Industry nr 301005	COMBUSTION INDUSTRIES	Bangladesh	Government
			District heating plants	Dhaka	Government
		Industry nr 301012	Coal mining, oil / gas extraction, pipeline	Chittagong	Government
SWLUHanoi-WB	Sep 2006				www.NILU.ao

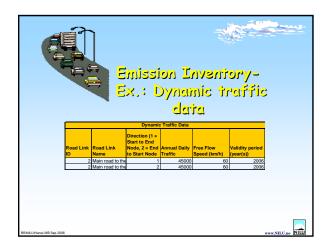
		sion In Consum				
Process ID	Process Fr	uel and Raw mater	Consu mption	Umption Dat	Time variation	Validity Period
-			Consu mption Amount	Unit name	Time variation	
30100501	Process Name	Fuel name	Consu mption Amount 190.987		Time variation	Period
30100501 30100601	Process Name Prosess 301005-1	Fuel name Hard coal Brown coal	Consu mption Amount 190.987 175.075	Unit name ton/year	Time variation	Period 1998
30100501 30100601 30101202	Process Name Prosess 301005-1 Prosess 301006-1	Fuel name Hard coal Brown coal	Consu mption Amount 190.987 175.075 889.427	Unit name ton/year ton/year	Time variation	Period 1998 1998

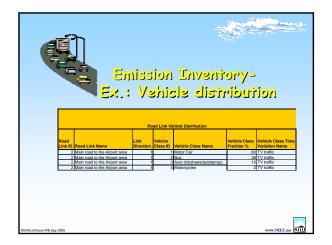

	Emission Inventory- Ex.: Emission factor data									
		Process Fuel	and production	n Emission fa	actor Da	ita				
	Process ID	Process Name	Fuel/product Name	Component Name	Factor	Unit Name	Year			
	30108101	Prosess 301081-1	Heavy fuel oil	PM10	10	kg/tonn	1998			
	30108101	Prosess 301081-1	Heavy fuel oil	PM2.5	5	kg/tonn	1998			
	30108101	Prosess 301081-1	Heavy fuel oil	NOx	0.001	kg/tonn	1998			
	30108101	Prosess 301081-1	Heavy fuel oil	NO2	0.01	kg/tonn	1998			
BS'NILUHanoi-WB	1 Sep 2006						www.NILU.no			

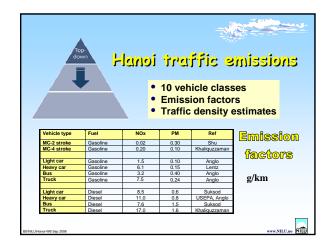


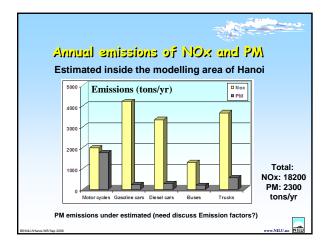


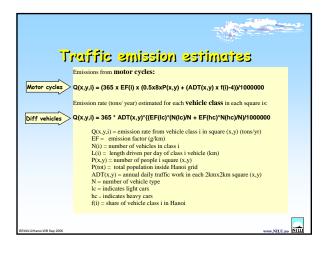


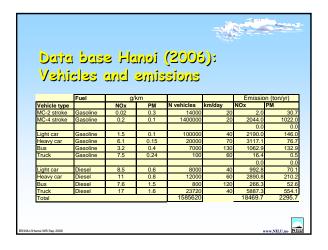

Emission Inventory-Traffic data • Static data (road network) • Dynamic data (Annual Daily Traffic) • Road link vehicle distribution (e.g. buses, passenger cars) • Traffic emission factors

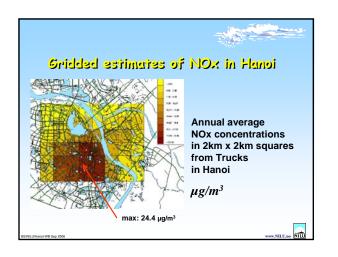


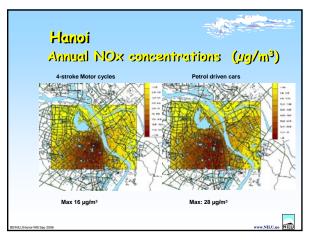


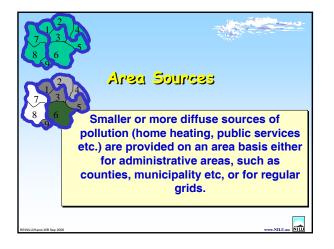


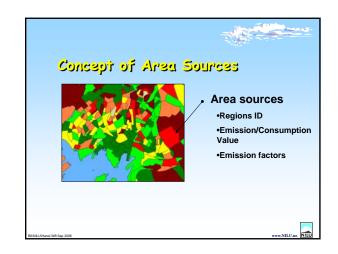


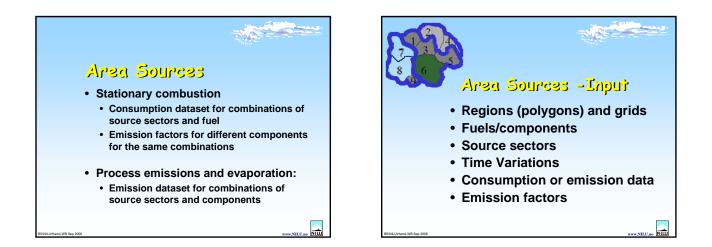


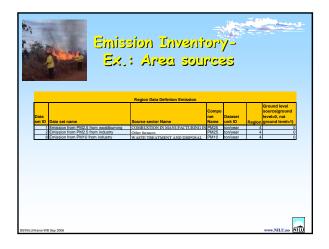


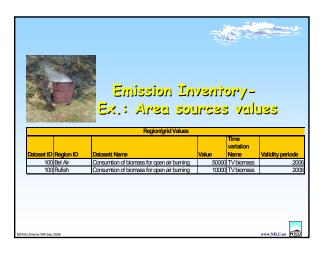


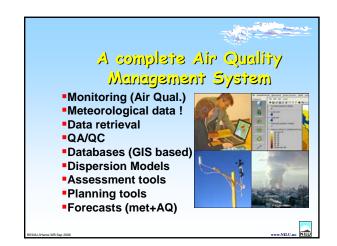


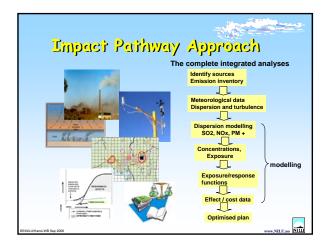


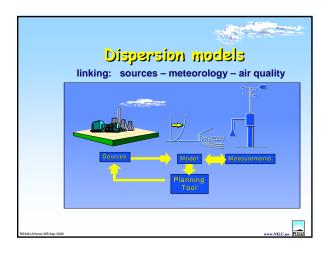


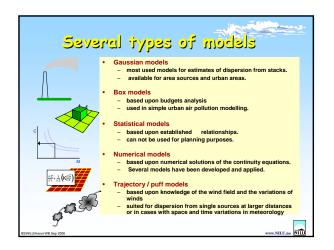


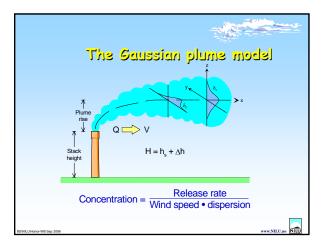


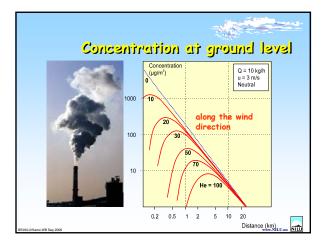


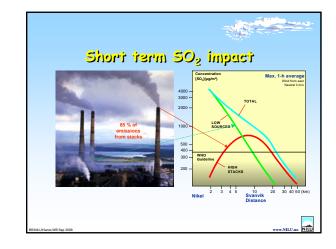


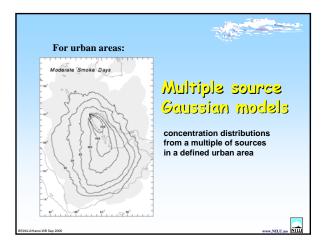


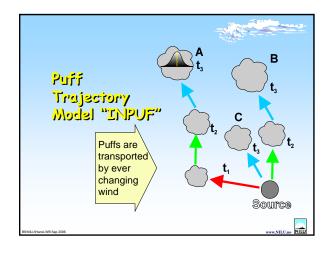


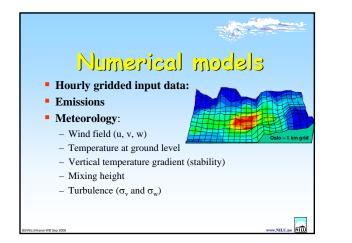


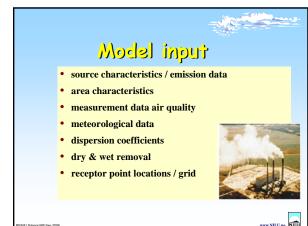


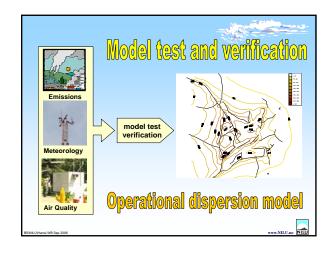


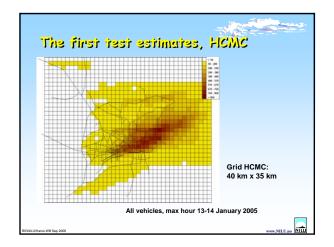


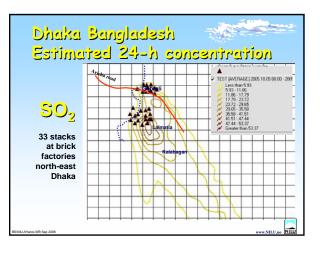




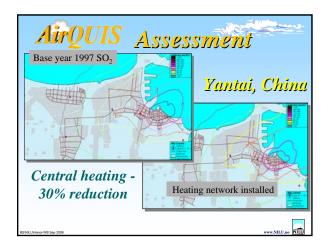


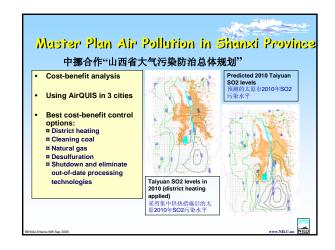


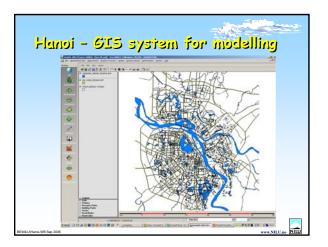


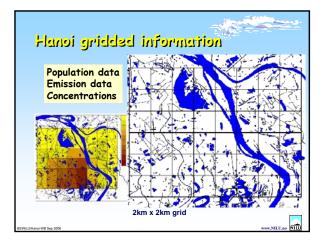


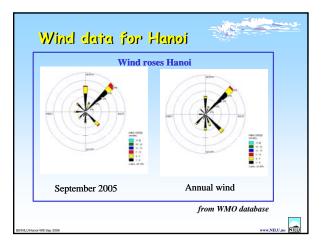


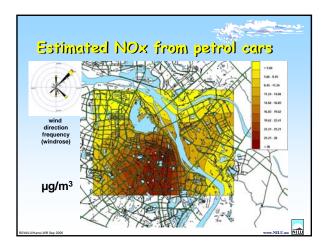

			-	
	eim <mark>B</mark>	sion <mark>D</mark>	dia <mark>Ba</mark>	152
	Geogra	phical Infor	mation Syste	em (GIS)
			≜	
	Calculatio	on of Emiss	ion Fields	Modelling
			↑	
			<u> </u>	
	Industry	Traffic	Population	Consumption
	 stacks process consumption component time variation 	road information road type/class vehicle class emission factors time variation	 distribution in sub areas 	 fuel type emisson factors temp. variation time variation
BSINILUHanoi-WB Sep 2006				www.NILU.no

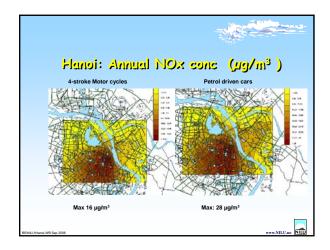


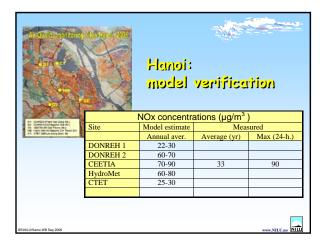


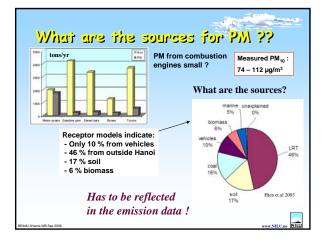


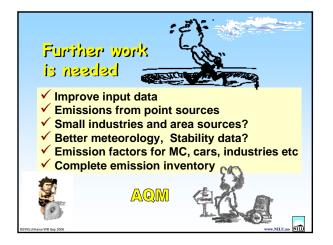


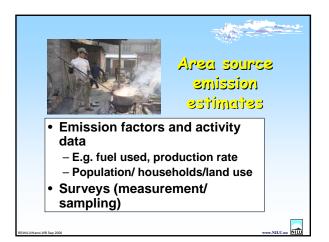


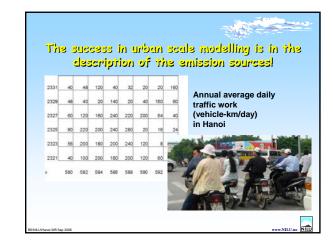


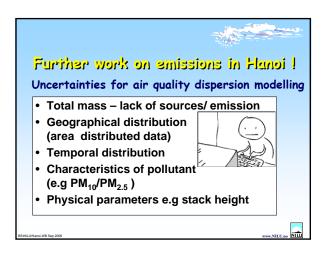


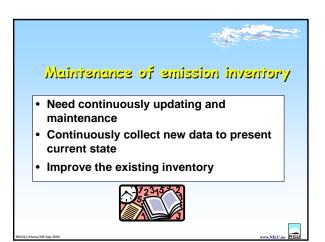


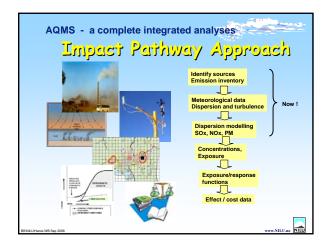


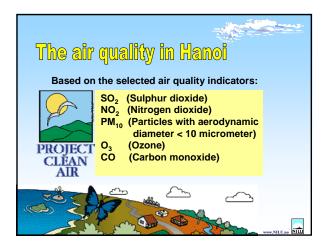


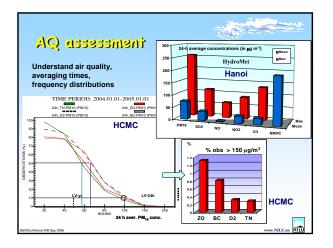


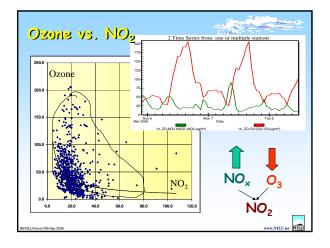


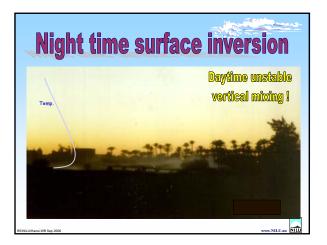


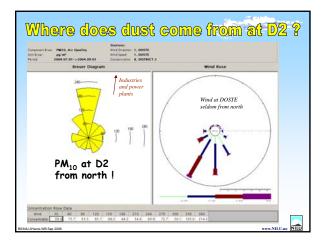


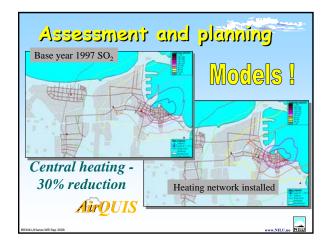


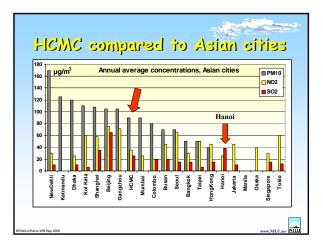


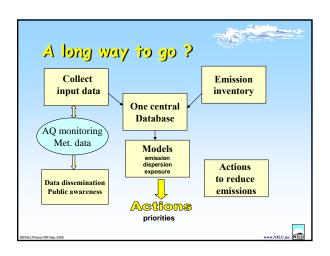


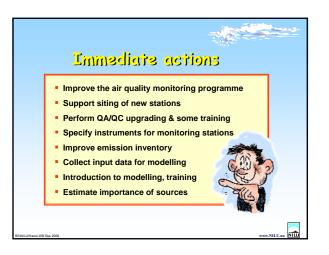


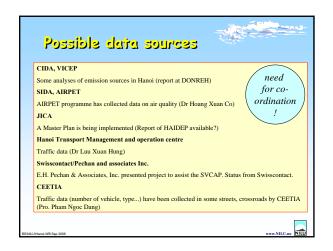


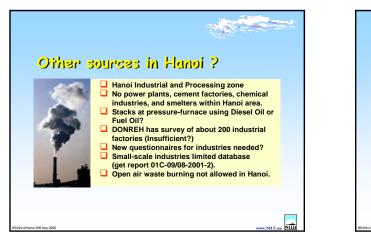

C) Gi	nideline	and s	trandar
Pollutant	Averaging Time	WHO (µg/m ³)	TCVN-2005 (µg/n
SO ₂	Annual Avg.	50	50
	24 Hours	125	125
	1 Hour	500 (10min)	-
CO	8 Hours	10 000	10 000
	1 Hour	30 000	30 000
NO ₂	Annual Avg.	40	40
	24 Hours	-	-
	1 Hour	200	200
O 3	8 Hours	120	80 (24 h)
	1 Hour	-	120
PM10	Annual Avg.	20	50
	24 Hours	50	150
Pb	Annual	0.5	
			LV

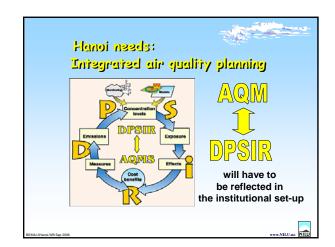


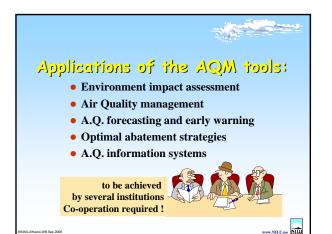


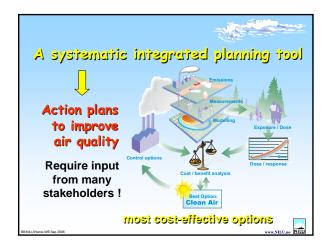




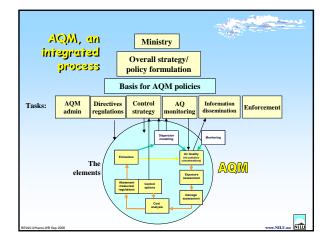


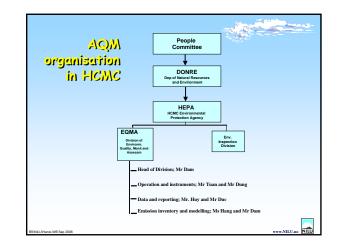


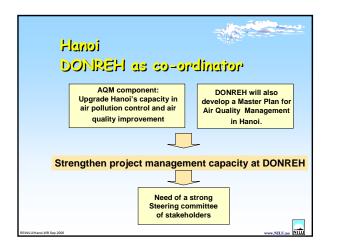




Seminar Hanoi 14 Sep. 2006- Bjarne Sivertsen, NILU

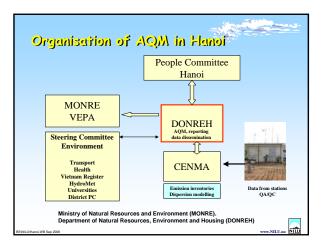


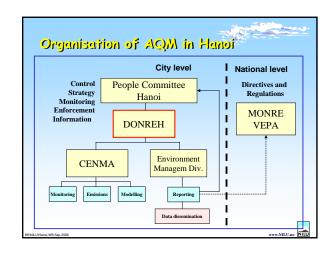


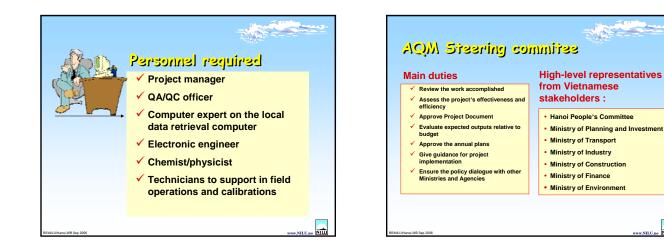


Seminar Hanoi 14 Sep. 2006- Bjarne Sivertsen, NILU






	INS FORSY	Reform" compone
Торіс	Partners (I: Implementation, R: Resource)	Role of implementation partner
National Program on Vehicle Emission Reductions (NPVER)	I: MOT/VR R: Nat. & int. consultants	Responsible organization for definition and implementation of NPVER. Lobbyist for and facilitator of inter-departmental working groups and multi-stakeholder consultations.
Clean Air legislation on national level	I: MONRE/DOE R: Nat. & int. consultants	Responsible organization for drafting/proposing clean air legislation. Facilitator of inter-departmental and multi-stakeholder discussions.
Air Quality Management (AQM) plan for Hanoi	I: HPC/Hanoi DONREH R: Nat. & int. consultants, various research institutes, HCMC DONREH	Responsible organization for drafting/proposing AQM plan for Hanoi. Facilitator of inter-departmental AQM working group and multi-stakeholder discussions.


Relevant a	organis	ations		
Organization	Function	Tasks	Mandated by	
Vietnam Environmental Protection Apency (VEPA)	Inspection and su- pervision	Inspection and super- vision of legislation and regulations	MoNRE	From SVCA Phase
Centre for Environmental Monitor- ing, Data and Information (CEMDI)	Information and data management	Environmental moni- toring, data manage- ment, data producer	MoNRE/VEPA	1
Hanoi Department of Natural Re- sources, Environment and Housing (Hanoi DONREH)	Environmental man- agement at city level	Data management, data producer	Hanoi People Committee	
Centre for Environmental Engineer- ing of Towns and Industrial Areas (CEETIA)	Research unit of Hanoi University of Civil Engineering	Data producer	MoNRE/VEPA]
Institute for Environmental Science and Technology (INEST)	Research unit of Hanoi University of Technology	Data producer	MoNRE/VEPA]
Centre for Environmental Technol- ogy Treatment (CTET)	Research	Data producer	MoNRE/VEPA]
National Centre for Hydro- Meteorology	Survey and forecast of meteo-hydrology, environmental moni- toring	Weather forecast, data producer	MoNRE	

Seminar Hanoi 14 Sep. 2006- Bjarne Sivertsen, NILU

