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Summary 

This report presents the work and activities carried out during the Nordic Council of Ministers 
funded project „Development and application of data assimilation in regional scale atmospheric 
chemical models‟ in the period 2005 - 2006. The project aim was to further develop and 
consolidate methodologies used in the Nordic countries for data assimilation in regional scale 
atmospheric chemical modelling. During the course of the two year project, work was carried out 
on a number of tasks including: 

 Statistical interpolation of PM10 using the Unified EMEP model 

 2dvar analysis of ground observations using the MATCH model 

 Statistical interpolation methods using the DEOM model 

 Numerical testing of the 4dvar method 

 Organization of an international workshop on data assimilation 

The applications and methodologies treated within the project covered a wide range. Generally the 
data assimilation methods are applied for two separate applications. The first of these is for 
assessment purposes. By combining monitoring and modelling data the best possible spatial 
assessment can be achieved. This sort of application is evident in the first 2 tasks of the project in 
which model and monitoring data are combined offline to improve the spatial assessment of air 
quality as well as deposition rates for use in environmental impact and risk assessment. The 
second application is that of forecasting and is represented here by tasks 3 and 4. This also aims 
at establishing the best possible spatial assessment but this is carried out on a higher temporal 
scale, hourly, with the intention of providing the best possible initial conditions for the chemical 
forecast being made. 

This document provides an overview of these research activities, carried out in relation to the 
Nordic Council of Ministers project, as well as a summary of the international workshop on data 
assimilation held as part of the project. 

Data assimilation for atmospheric chemical models is under continuous development and is still a 
highly research oriented activity. It usefulness in providing the optimal combination of modelling 
and monitoring data from a number of sources is leading to improved assessment and forecasting 
of air quality in Europe. The development carried out, and shared knowledge obtained, during the 
course of this project has proven to be extremely useful for the further development of data 
assimilation methodologies in the Nordic countries. 
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1.  Introduction 

Data assimilation is a term referring to the various methods used to combine monitoring, or other 
forms of measured, data and model calculations. It describes a wide range of techniques, from the 
most simple post-modelling interpolation methods, to highly complex variational assimilation 
methods. Variational data assimilation techniques are often used in weather prediction models, 
and a number of European groups have already invested considerable efforts in applying this 
method to atmospheric chemical transport modelling. There are, however, also other common 
data assimilation methods, such as Kalman filters and ensemble methods, which can also be 
utilized. 

This report presents the work and activities carried out during the NMR funded project 
„Development and application of data assimilation in regional scale atmospheric chemical models‟ 
in the period 2005 - 2006. The project aim was to further develop and consolidate methodologies 
used in the Nordic countries for data assimilation in regional scale atmospheric chemical 
modelling. During the course of the two year project, work was carried out on a number of tasks 
including: 

 

1. Statistical interpolation of PM10 using the Unified EMEP model 

2. 2dvar analysis of ground observations using the MATCH model 

3. Statistical interpolation methods using the DEOM model 

4. Numerical testing of the 4dvar method 

5. Organization of an international workshop on data assimilation 

 

The applications and methodologies applied covered a wide range. Generally data assimilation 
methods are applied for two separate applications. The first of these is for assessment purposes. 
By combining monitoring and modelling data the best possible spatial assessment can be 
achieved. This sort of application is evident in the first 2 tasks of the project in which model and 
monitoring data are combined off line to improve the spatial assessment of air quality and 
deposition rates for use in risk assessment. The second application is that for forecasting. This 
also aims at establishing the best possible spatial assessment but this is carried out on a high 
temporal scale, hourly, with the intention of providing the best possible initial conditions for the 
chemical forecast being made. In addition to these major applications more fundamental work has 
been carried out on numerical methods for data assimilation. 

The methodologies employed also vary. However each of the assimilation methods used 
(statistical interpolation, 2dvar and 4dvar) all have a common basis in variational methods. I.e. 
they try to minimise the estimated variance, or uncertainty, in the data to provide the best 
estimates. 

The pollutants investigated also vary but ozone is a common pollutant that can be well treated with 
data assimilation methods. This is to a large extent the result of a large database for ozone 
monitoring. Other compounds, such as PM10 or base cations, are more limited in the available 
monitoring data. 

The workshop on „Data assimilation in regional scale atmospheric chemistry models‟ was held at 
NILU on 15 November, 2005, halfway through the project. More than 20 participants attended the 
one day workshop from the institutes involved and 8 scientific presentations were given. Two 
invited speakers, Hendrik Elbern and Arnold Heemink, who are experts in data assimilation 
methods also attended, providing valuable input and discussion. The report from the workshop has 
already been submitted as part of the first years reporting (Denby et al., 2006). 

Data assimilation for atmospheric chemical models is under continuous development and is still a 
highly research oriented activity. It usefulness in providing the optimal combination of modelling 



10 

 

NILU OR 30/2007 

and monitoring data from a number of sources is leading to improved assessment and forecasting 
of air quality in Europe. The development carried out, and shared knowledge obtained, during the 
course of this project has proven to be extremely useful for the further development of data 
assimilation methodologies in the Nordic countries. 

References 

Denby, B., Brandt, J., Elbern, H., Frydendall, J., Heemink, A., Hvidberg, M., Kahnert, M., Tarrason, L., van 
Loon, M., Walker, S. E. and Zlatev, Z. (2006) Data assimilation in regional scale atmospheric chemical 
models. NMR Workshop at NILU, Kjeller Norway, 15 November 2005. Denby B. (ed.). Kjeller (NILU OR 
43/2006).URL: www.nilu.no/data/inc/leverfil.cfm?id=22718&type=6  
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2. Statistical interpolation of PM10 using the Unified EMEP model: 
Application for air quality assessment in Europe and the Nordic 
countries 

Contribution from NILU 

 

2.1 Introduction 

The aim of this work is to apply data assimilation methods for calculating the spatial distribution of 
PM10 exceedances, as defined in EU legislation (EC, 1999), on the European scale.  Assessment 
of PM10 on this scale is required for estimating European wide health impacts and risk 
assessments suitable for policy development at the national and European level. Historically such 
assessments have been carried out with the use of ground based monitoring data only. This data 
is spatially inhomogeneous, providing information only at monitoring sites and as such cannot be 
used directly to calculate exceedances over the entire domain. 

Chemical transport models (CTMs) may be used to calculate the spatial and temporal distribution 
of chemical compounds. For the case of PM10 regional scale CTMs tend to severely underestimate 
the measured concentrations (van Loon et al., 2004). As such CTMs by themselves are not useful 
tools for assessing limit value exceedances of PM10 in Europe, however they do provide important 
spatial information for the assessment. By combining such models with observations through the 
use of data assimilation techniques the quality of the assessment can be significantly improved. 

There is a range of statistical interpolation techniques that can be used to assimilate, combine or 
„fuse‟, data from different sources to create spatial concentration fields. These include traditional 
optimal interpolation methods (OI), Kalman filtering, kriging and residual kriging methods, 
regression and multiple regression techniques, e.g. Blonde et al. (2003); Horálek et al. (2005), 
Kassteele  and Velders (2006), Fuentes and Raftery (2005) and Kasteele et al. (2006). The aim of 
all these methods is to combine various data sources, usually monitoring and modelling sources 
but also other information from remote sensing platforms or from emission or land use datasets, to 
provide the best estimate of the spatial distribution of a particular pollutant. 

In this report a selection of basic data assimilation methods are applied, compared and assessed. 
These make use of statistical interpolation techniques, specifically linear regression and residual 
kriging. The methodologies are applied to the Unified EMEP model, together with the assimilation 
of ground based PM10 observations taken from the Airbase database, for the years 2003 and 
2004. 

This study presents an extension of the work conducted during the Air4EU FP6 project 
(www.air4eu.nl) into the application of assimilation methods on the European scale (Denby, 2007) 
and is in support of ongoing tasks by the European Topic Centre on Air and Climate Change to 
produce European wide assessment maps for health and ecosystem risk assessment applications 
(Horálek et al., 2007). This study gives special attention to the results of the assimilation 
techniques for the Nordic countries and discusses their applicability there. 

 

2.2 Methodology 

The region of Europe under focus is continental Europe, including Scandinavia. Daily mean 
concentrations of PM10 for the years 2003 and 2004 are calculated using input from the Unified 
EMEP model and from the Airbase database. 

To compare the different assimilation methodologies cross-validation is used.  This involves the 
removal of one station from the dataset and carrying out the assimilation process to determine the 
concentration at that point in space. This is done for all stations building up a model dataset that 
can be independently compared with measurements.  

http://www.air4eu.nl/
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The result of the assimilations are analysed through assessment of the annual mean 
concentrations and the number of exceedances. Assessment of the methods is carried out using 
the statistical parameters root mean square error (RMSE), mean absolute error (MAE), coefficient 
of determination (R2) and linear regression parameters of intercept and slope to indicate bias. 
Maps of the resulting exceedance fields are provided along with their assessed uncertainty maps. 
A number of individual Nordic stations are also used for assessment of the methodology. 

2.2.1 Monitoring data 

The monitoring data used is taken from the Airbase database (Airbase, 2005). Only monitoring 
sites described as rural background are used for the assimilation. A further selection of temporal 
coverage is made, including all monitoring sites with a temporal coverage > 25%. 

In total 227 stations defined as rural background are registered in the Airbase database. Not all 
this stations are available. For 2003 the average number of stations available per day is 167, for 
2004 this is 183. 

 

Figure 2.1. Positions and temporal coverage of the Airbase data used in the assimilations for the 
years 2003 (left) and 2004 (right). The size of the circles indicates the temporal coverage of the 
stations in %. 

 

2.2.2 Unified EMEP model 

The Unified EMEP model version rv2_1_2 (Simpson et al., 2003) has been used in the 
assimilation process. The model produces concentration fields of PM10 on a 50 x 50 km grid for all 
of Europe. In a recent intercomparison study for the years 1999 and 2001 (van Loon et al., 2004) 
the model, like many other European scale models, was shown to significantly underestimate PM10 
concentrations with a relative bias of -45%. The underestimation is, most likely, caused by the 
large uncertainty in the modelling and measurement of secondary organic aerosols (SOA), and by 
the missing emission sources such as wind blown dust and resuspension. Despite this large bias 
the spatial distribution of PM10 concentrations represented by the EMEP model is expected to give 
valuable information to their spatial distribution. 

For this study daily mean PM10 concentrations, as calculated by the Unified EMEP model, are 
used. When these concentrations are compared to observations bilinear interpolation is used from 
the 4 nearest model grids. 
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2.2.3 Statistical interpolation 

In this study a number of statistical interpolation methods are employed on the daily mean PM10 
model and observational datasets. These are linear regression, ordinary kriging, residual kriging of 
the linear regression and lognormal residual kriging with linear regression. These, and other, 
methods have been extensively tested in Horálek et al. (2006 and 2007) on the annual mean 
statistics. A more detailed study of their application on daily mean data can be found in Harálek et 
al. (2007), Chapter 6. 

Linear regression 
Linear regression of the daily mean model concentrations with the observed concentrations 
provides one of the simplest methods for correcting bias in the model. This can be written as  

 

 ),(),( yxbMayxM          (2.1) 

 

where the parameter a is the intercept, b the slope, M the model and M’ the linear regression 
model. Linear regression minimises the mean square error of the regression model, in regard to 
the observations, to provide values for the parameters a and b. It is an effective method for 
removing the bias from the model but does not take into account the spatial variability of these 
parameters. 

Linear regression was applied on a daily basis to the model. To avoid unrealistic results in the 
regression the following 2 conditions were applied. 

1. If the intercept was found to be < 0 the regression was reanalysed by setting the intercept 
to 0 

2. If the coefficient of determination was < 0.1 then the regression slope was set to 1 and the 
intercept calculated. 

Though it has been shown (Horalék et al., 2006) that multiple regression with other spatially 
distributed data, such as topography, can improve the regression statistics for annual fields, only 
the CTM data was used in this comparison. 

When linear regression is applied to the logarithm of the concentrations adjustment to the method, 
based on the correlation and intercept, is not carried out. 

Ordinary kriging 
Kriging is an often used interpolation method in the geosciences. It revolves around the 
assumption that there is a spatial correlation that can be described by a spatial variance function, 
the semi-variogram. This function can be used to interpolate to any point in space when 
observations are available. With kriging the value of the interpolated point is weighted with the 
observational values such that its variance is minimised. In other words, given the assumed nature 
of the spatial variance function the value given to the interpolated point is statistically the most 
likely one. Defining the semi-variogram function is thus critical to the method and should in 
principle be based on fits to the measured spatial variance. The most common function used to 
describe the semi-variogram is the spherical model, which is defined by the 3 parameters range, 
nugget and sill. 

The weighting method is defined below where MOK is the result of the ordinary kriging interpolation, 

i is the weighting parameter and O(xi, yi) is the observation i at position x and y. 

 

 
n

i

iiiOK yxOyxM
1

),(),(         (2.2) 
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Kriging works best when the spatial variability is much larger than the distance between 
measurement points. As such it has been applied, in air quality applications, to a large number of 
ozone interpolation applications where the density of measurement stations is high in comparison 
to the spatial variability.  

In this study ordinary kriging is applied, which is the type of kriging most often used. It separates 

itself from other kriging methods in that it requires the sum of the weights, I, to be equal to 1. This 
leads to particular properties including that the interpolated field, far from the observations, 
approaches the mean of these observations. For a description of kriging methods one is referred 
to various books on the subject such as Webster and Oliver (2001) and Cressie (1993) 

Ordinary kriging was applied to the daily mean observed concentrations. The kriging parameters of 
nugget, sill and range were determined in two ways, firstly by fitting the semi-variogram with a 
spherical variance function and secondly by optimising these parameters to obtain the minimum 
cross validation RMSE. The second of these methods is used throughout as it always provides the 
lowest RMSE values (Denby, 2007).  

Residual kriging of the regression model 
In this method the linear regression is used as a basis for the interpolation and the residuals, 
observed minus regression model, are spatially interpolated using ordinary kriging. This is similar 
to methods using kriging with external drift, e.g. Kassteele and Velders (2006), and has been 
extensively investigated in other studies, e.g. Horalek et al. (2006) and Denby (2007). Residual 
kriging of the regression model can be formulated, similarly to kriging, as: 

 

  ),(),(),(),(
1

_ yxMyxMyxOyxM
n

i

iiiiiRESOK     (2.3) 

 

Log-normal residual kriging of the regression model 
Log-normal residual kriging was also performed by transforming the concentrations using their 
natural logarithm. This has carried out since concentrations of PM10 are often log-normal in their 
frequency distribution and as such the log transformation should provide more normally distributed 
concentration values and normal distributions should work best for the statistical methods applied 
here. This has been shown to be the case in Horálek et al. (2005). For the log-normal residual 
kriging the logarithmic transformation has been made for both the linear regression and the 
residual kriging. 

2.2.4 Assessment methodology 

In general cross-validation is used to assess the quality of the methodology. This involves 
removing one of the observational sites from the data set and carrying out the interpolation at that 
point in space. The entire observational dataset is cycled through to produce a cross-validation 
dataset that can be compared statistically to the actual observations. Statistical parameters used 
are the root mean square error (RMSE), the mean absolute error (MAE), the coefficient of 
determination (R2) and the regression slope and intercept.  

 

2.3 Air quality mapping and assessment 

The results of the cross-validation for the 2 yearly periods have been assessed for the methods 
outlined above and are presented in tables 2.1 and 2.2. It should firstly be noted that the EMEP 
model severely underestimates the PM10 concentrations. This can be seen in the large bias 
(regression intercept). Annual mean concentrations using all measurements are 19.9 µgm-3 and 
23.5 µgm-3 for the years 2003 and 2004 respectively giving a model bias of around –50%. 
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The results of the assimilations show that normal and log-normal residual kriging provides the 
lowest RMSE and MAE of all the methods. There is however only a slight improvement, if any, with 
the log-normal method over the normal method in comparison for both years.  

 

Table 2.1 Statistical analysis of the cross-validation results of the model and assimilation methods 
applied in the study for the years 2003 (top) and 2004 (bottom). The statistical analysis is based 
on the daily mean concentrations. 

Cross-validation 
statistical 
parameter for 
2003 

 
EMEP 
model 
 

 
Linear 
regression 

 
Ordinary 
Kriging 

 
Residual 
kriging 

Log-normal 
residual 
kriging 

RMSE (µgm
-3

) 20.1 14.8 12.1 11.9 11.8 

MAE (µgm
-3

) 14.0 9.21 7.3 7.1 6.9 

Correlation (R
2
) 0.27 0.36 0.57 0.59 0.60 

Intercept (µgm
-3

) 13.5 1.2 0.7 0.9 1.8 

Slope 0.89 0.95 0.97 0.96 1.0 

 

Cross-validation 
statistical 
parameter for 
2004 

 
Model 
 

 
Linear 
regression 

 
Ordinary 
Kriging 

 
Residual 
kriging 

Log-normal 
residual 
kriging 

RMSE (µgm
-3

) 17.1 12.6 10.1 9.9 9.9 

MAE (µgm
-3

) 12.0 8.0 6.2 6.1 5.9 

Correlation (R
2
) 0.18 0.26 0.53 0.55 0.55 

Intercept (µgm
-3

) 12.9 2.2 0.7 1.0 1.6 

Slope 0.75 0.89 0.96 0.95 0.99 

 
Maps are constructed at a resolution of 25 km. These show the regional background annual mean 
concentrations and NOE days for PM10. The maps, for the 2 years assessed, are shown in figure 
2.2 The year 2003 provided generally more exceedances of both the annual mean and the daily 
mean limit values. The area covered by daily mean exceedance is much larger than the annual 
mean. There are a number of regions that are in exceedance even on the regional level. These 
include the Nehterlands, the Poe valley in Italy and a large region in the industrialized regions of 
southern Poland. No exeedances on the regional scale are seen in the Nordic countries. 
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2003 

     

2004 

     

Figure 2.2. Maps showing the results of the residual kriging assimilation method for the 2 years 
2003 (top) and 2004 (bottom). Shown are the annual mean PM10 concentrations (left), with a EU 
limit value of 40 µgm-3, and the number of exceedance days (right). The limit value for daily mean 
exceedance is 50 µgm-3 and the maximum number of allowable exceedances of this value is 36 
µgm-3. 

 

2.4 Uncertainty analysis and mapping 

The maps presented in chapter 2.3 show the calculated spatial distribution of both annual mean 
concentrations and number of exceedances (NOE) of the daily mean limit of 50 µgm-3 for PM10. 
These maps are constructed based on the daily mean residual kriging and regression fields. With 
each day an uncertainty, defined by the residual kriging variance, for each point in space can be 
determined. The variance is generally lowest close to stations and largest far from stations. 
However, the daily mean uncertainty does not tell us directly the annual mean or the NOE 
uncertainty. To calculate the uncertainty in these two parameters 2 approaches are used. 

Annual means are calculated by taking the mean of all days of the year. It is not simply a matter of 
taking the mean of the variance for each day to obtain the annual average uncertainty field since 
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these fields are correlated to some extent with each other. To assess the annual mean uncertainty 
the temporal covariance matrix must be estimated that represents the correlation between the 
separate days of the year. Such an assessment, and the methodology for doing so, is described in 
(Denby, 2007). The temporal covariance was found to be extremely important for the annual mean 
uncertainty assessment, due to similar meteorological conditions that lead to correlated 
concentration distributions. Figure 2.3 (left) shows the calculated uncertainty fields, square root of 
the kriging variance, for the years 2003 and 2004. Both years show a similar uncertainty 
distribution with the absolute value being slightly lower for 2004 than 2003 due to generally lower 
concentrations in that year. Close to stations the annual mean uncertainty is around 4 – 5 µgm-3 
whilst far from stations this uncertainty increases to around 8 – 9 µgm-3. This is approximately the 
uncertainty expected from the linear regression model. 

In an unbiased model the uncertainty in the NOE days can be derived directly from the probability 
of exceedance for each of the days. This approach will lead to quite low estimates of the 
uncertainty in NOE days. Representativeness bias will tend to dominate the NOE days uncertainty. 
This means that the uncertainty due to spatial representativeness of the annual mean 
concentrations determines the uncertainty in the NOE days. The uncertainty in the NOE can thus 
best be estimated by use of the annual mean standard deviation (SD) percentile band, based on 
the square root of the kriging variance. This is assessed by adding and subtracting the annual 

mean SD from the daily mean value ( ), which reflects the model and representativeness bias. 
The uncertainty in NOE days can then be interpreted as being the maximum deviation, in number 

of days, from the  calculations (Denby, 2007). Maps of this derived quantity are shown in figure 
2.3 (right). Uncertainty in some areas far from observations can be very high (>50 days) showing 
that the estimates in these regions are actually very poor. In other areas closer to observations the 
estimated uncertainty in the NOE days is around 5 – 10 days. 

 

2003 
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2004 

     

Figure 2.3. Maps showing the calculated uncertainty of the residual kriging assimilation method for 
the 2 years 2003 (top) and 2004 (bottom). Shown are the annual mean PM10 uncertainties (left) 
and the uncertainty in the number of exceedance days (right). Methods for calculating these 
uncertainties are described in the text. 

 

2.5 Assessment of the assimilation at Nordic sites 

A number of Nordic stations are included in the assimilation and the effectiveness of the 
assimilation can be checked at these sites using the cross-validation technique. Generally Nordic 
stations are more isolated than other European sites and so the residual kriging method is not 
expected to provide as significant improvement as with other continental sites. In figure 2.4 the 
positions of 9 Nordic sites are shown. In regard to the positions of the stations it should be noted 
that the two Danish stations DK0048A and DK0005R are placed just 1km apart. In 2003 data from 
the Danish stations DK0048A was missing and in 2004 data from the Finish station FI0032A was 
also missing. 

 

Figure 2.4. Positions and temporal coverage of the Nordic stations used in the assessment. 
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In figures 2.5 - 2.7 The annual mean, coefficient of determination and daily mean RMSE are 
compared for all 9 Nordic stations. The following conclusions can be drawn: 

1. The annual mean bias is reduced with the assimilation technique for all stations except the 
Norwegian station (NO0001R) in both years 

2. The daily mean RMSE is reduced with the assimilation technique for all stations except the 
Norwegian station (NO0001R) in both years 

3. The coefficient of determination is improved with the assimilation technique for all stations 
except the Swedish station (SE0035R) in both years 

These results indicate the effectiveness of the assimilation technique even in the more isolated 
areas where observations are few. The major exception in the 9 stations studied is the Norwegian 
station at Birkenes (NO0001R). The reason for this may lie in its physical proximity to continental 
polluted regions, such as Germany and the Netherlands, whilst the air mass passing over the 
station has its origins far from the continent. Other stations that have similarly low concentration 
levels, such as the Swedish station SE0035R, are physically further removed from the continental 
stations and will be less influenced by these and more by the intervening stations. This indicates 
one of the short comings of the methodology. However, it is of interest to note that the uncertainty 
calculations, figure 2.3 indicates an uncertainty of around 8 µgm-3 at these more remote Nordic 
stations. In this regard the Birkenes station, with an average bias of 8.4 µgm-3 is not an unlikely 
result and simply reflects existing uncertainties in the assimilation method. 
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Figure 2.5. Annual mean concentrations at the 9 Nordic stations for the years 2003 (top) and 2004 
(bottom). Shown are the results from the Unified EMEP model and the residual kriging assimilation 
technique as well as the observed values. 
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Figure 2.6. Daily mean RMSE at the 9 Nordic stations for the years 2003 (top) and 2004 (bottom). 
Shown are the results from the Unified EMEP model and the residual kriging assimilation 
technique. 
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Figure 2.7. Daily mean coefficient of determination (R2) at the 9 Nordic stations for the years 2003 
(top) and 2004 (bottom). Shown are the results from the Unified EMEP model and the residual 
kriging assimilation technique. 

 

2.6 Conclusions and future work 

The assimilation technique applied in this study, residual kriging of the regression model, has been 
shown in this and a number of other studies to be effective in improving the spatially distributed 
concentrations of PM10. The technique is straight forward and can be applied using currently 
available GIS software, though the work carried out here was scripted in Matlab. For the case of 
PM10 where model results are generally poor the need to assimilate these with observations is 
clear and this methodology is capable of providing much improved results in regard to the CTM 
themselves. However, as has been indicated by this particular study, it does not improve results at 
all sites. 

In this regard the assimilation technique also allows the spatial uncertainty to be determined. This 
is an important step that enables a more critical and objective assessment of the model and 
assimilation results. It also allows a clearer understanding of the quality of the maps for policy or 
decision making purposes. The calculation and display of uncertainty maps is one of the future 
research activities that will lead from this study.  

The methodology described here is currently being compared with a more sophisticated data 
assimilation method, that being ensemble Kalman filtering, applied to the LOTOS-EUROS model. 
This will enable a clearer assessment of the effectiveness of this technique compared to more 
advanced data assimilation methodologies. 
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3. Operational 2dvar analysis of ground observations in the Swedish 
National Environmental Surveillance Programme 

Contribution from SMHI 

 

3.1 Introduction 

The Multiple-Scale Atmospheric Chemistry and Transport Model (MATCH) [Robertson et al., 1999] 
is used in a wide range of different applications ranging from emergency alert to photo-chemistry 
assessments on various scales. Within the scope of the national environmental surveillance 
programme assessments of both air quality and critical loads are conducted on an annual basis. In 
this context it is of specific interest to discriminate between the long-range regional background 
and the local contribution to the air quality situation as well as to map dry and wet deposition of 
acidifying and eutrophying chemical species over Sweden.  

To assess the domestic contribution to both air quality and the environmental impact of air 
pollution, MATCH is applied on a high-resolution grid (11 km) with detailed national emission 
inventories. A quasi-stationary Sulphur-Nitrogen chemistry scheme is employed. The chemistry is 
only weakly non-linear, which justifies the use of a chemistry scheme that accounts for only a 
subset of the atmospheric contents. The ozone field is an input parameter to the S-N chemistry 
scheme. 

Variational data analysis has only recently been incorporated into the operational process. The 
background field is computed with the MATCH photochemistry version run on a European scale 
with European emission inventories and with low resolution (44 km). The analysis system is 
employed for three main purposes. (i) The ozone field is determined by analysing hourly ground 
observations in conjunction with MATCH photochemistry results.  The analysis result is used as 
input to the MATCH-Sweden model. (ii) MATCH-Sweden results are subtracted from MATCH-
photochemistry results and from observations. The differences, which are interpreted as the long-
range transport (LRT) contributions, are analysed. By adding the MATCH-Sweden results to the 
analysis results one obtains a high-resolution total field of NOx, SOx, and NHx concentrations in air 
and precipitation, which has been corrected by the observations. (iii) MATCH-seasalt modelling 
results are analysed by means of ground observations of Na+, Ca2+, Mg2+, and K+. The LRT and 
total fields of secondary inorganic compounds, as well as analysis results for base cations, serve 
as input to the MATCH deposition module, which computes critical loads on a high-resolution 
spatial scale over Sweden.  

 

3.2 Methodology 

The basis of the variational data analysis approach shall be sketched out briefly. Let us assume 
we have observations of some quantity y at k different observation points R1,…,Rk. The field of 
observations shall be denoted by the vector y=(y(R1),…,y(Rk))

T. In addition there are modelling 
results x(b) available of some quantity x at the model domain‟s grid points r1,…,rm, where the field 
of observations (the so-called background field) shall be denoted by the vector 
x(b)=(x(b)(r1),…,x(b)(rm))T. In practice, y and x may represent the same quantity. For instance, one 
may have an observation field y of ozone concentrations and a corresponding field x(b) of 
computed ozone concentrations. However, y and x may also represent different but related 
quantities. For instance, y may represent satellite radiance observations from which the ozone 
concentrations can be retrieved. Let h denote an operator that allows for interpolating the 
background field to the observation points, such that h(x(b)) can be directly compared to y. The 
variational approach starts by defining a cost functional 
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where B and O denote the background and observational error covariance matrices, respectively. 
The cost functional J is a measure for how much a field x simultaneously deviates from both the 
background field x(b) and the observations y. The smaller the error of an observation or a 
background value the more the corresponding deviation contributes to the cost functional. The 
optimum “combination” of observations and background information is found by minimising the 
cost functional. The corresponding field x(a) that minimises J is called the field of analysed values. 

It satisfies the condition 0x )( )(aJ . In practice one determines x(a) iteratively. One starts with 

some initial guess x(0), computes J[x(0)] and ][ )0(
xJ , and uses the gradient information in a 

standard descent algorithm to obtain an improved field x(1) that lies closer to the minimum of J. 
This procedure is repeated iteratively to successively find improved fields x(i) with each iteration 
step i, until the algorithm has converged with sufficient accuracy towards the analysed field x(a).  

Observations and model results are combined in the variational method in a systematic, well-
controlled and reproducible fashion. For instance, less reliable observations are assigned a larger 
error variance and will automatically receive a lower weight in the determination of the analysed 
field x(a). The error variances are the diagonal elements of the error covariance matrix. The 
assignment of the observational error variances can be fully automatised by making use of a data 
flagging system, as well as by taking the impact of meteorological conditions on the reliability of 
observations into account. Data flagging instead of data pre-processing allows for commenting a 
data file in a well-defined way without manipulating the actual data, which enhances the 
reproducibility of results. The background error covariances determine how far the information 
contained in an observation is propagated out into the area surrounding the observation point.  

When applying the variational data analysis technique to air pollution monitoring problems one 
usually deals with a two dimensional field of observations near the ground, which needs to be 
combined with model results. The corresponding implementation of the variational approach is 
therefore referred to as the two-dimensional variational (2dvar) data analysis method.  

 

3.3 2dvar post-processing of MATCH results 

3.3.1 Ozone  

The concentration of ozone at the surface can vary on a much smaller spatial scale than, for 
instance, sulphate or nitrate concentrations. The existing network of ozone monitoring stations in 
Sweden is insufficient for resolving these spatial variations. It is therefore essential that the 
information available from measurements is supplemented by model results. The MATCH model is 
capable of accounting for various effects, such as spatially varying ozone deposition rates due to 
physiographic variations, and thus to provide the necessary supplementary information to ozone 
monitoring data. The merits of combining ozone observations and model results by use of data 
analysis are illustrated in Figure 3.1.  
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Figure 3.1. O3 concentration field obtained from an interpolation of observations (left), the MATCH 
photochemistry model (middle), and a 2dvar analysis of the MATCH results and observations 
(right). 

 

A mere interpolation of observations (left panel) has two main drawbacks. Firstly one can obtain 
unrealistic results from regionally unrepresentative observations. Secondly the results in data void 
regions are highly unreliable, since they are based on an interpolation of observations from distant 
stations. By combining model results (middle panel) with observations by use of the 2dvar data 
analysis technique one obtains an analysed ozone concentration field (right panel) in which the 
model result is corrected by the observations. However, the influence of unrepresentative 
observations is considerably reduced as compared to a pure interpolation of measurements. 
Observation error variances and variational quality control parameters can be tuned to reduce the 
influence of or reject unreliable observations. Further, in data void regions the analysis relies 
mostly on the modelled background field, which yields considerably more reliable results. 

3.3.2 Sulphur and nitrogen compounds 

Figure 3.2 shows an example for SO2. The left panel shows SO2 air concentrations computed on 
an 11x11 km2 grid using Swedish emissions with the MATCH-Sweden model, employing the S-N 
chemistry scheme, and using the analysed ozone concentrations from the previous example as an 
input field. The middle panel shows a clip-out of the SO2 concentration field computed on a 44x44 
km2 grid covering all of Europe with the MATCH-photochemistry model using European emission 
inventories. The Swedish contribution is subtracted from both the photochemistry results and the 
SO2 observations, the difference is interpreted as the LRT-contribution (thus neglecting non-linear 
chemistry effects), and the LRT field is analysed. The main idea behind analysing the LRT instead 
of the total concentration field is that the LRT field can be assumed to vary smoothly on a larger 
spatial scale than the total field, which contains local, small-scale contributions. Subsequently, the 
high-resolution Swedish contribution is again added to the LRT analysis result. The resulting high-
resolution analysis of the total field is presented in the right panel. By comparing the middle and 
the right panel one observes both the corrections to the background field by the observations and 
the modifications of the low-resolution background field due to high-resolution information about 
the Swedish contribution.  
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Figure 3.2. SO2 concentration field computed with the high-resolution MATCH-Sweden model 
(left), the low-resolution MATCH-Europe photochemistry model (middle), and the high-resolution 
2dvar-analysis (right). 

 

This kind of data analysis is carried out operationally for daily averaged concentrations of SO2, 
NO2, NHx, sulphate, and nitrate in air, as well as for monthly averaged concentrations of sulphate, 
nitrate, and NHx in precipitation. 

3.3.3 Base cations 

In the previous examples the background error covariance matrix was assumed to be 
homogeneous and isotropic, i.e. invariant under translations and rotations. For the analysis of 
base cations we drop this assumption. To this end we introduce empirical coast-class correction 
factors [Lövblad et al., 2004] based on measurements of the variation of base cation 
concentrations at varying distance from the coast (see Figure 3.3, left panel). By constructing a 
matrix with these coast-class correction factors on the matrix diagonal and zeros in the off-
diagonal elements one obtains a similarity transformation that introduces inhomogeneity and 
anisotropy in the background error covariance matrix such that the information from the 
observations is propagated out to the sea over a larger radius than over land. Since the inversion 
of a diagonal matrix is trivial this similarity transformation does not deteriorate the conditioning of 
the background error covariance matrix. 
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Figure 3.3. Empirical coast-class correction factors (left), Na-analysis with an isotropic, 
homogeneous B-matrix (middle), and with anisotropy and inhomogeneity introduced into the B-
matrix by the coast-class correction (right). 

 

The effect of this anisotropy can be seen in the sodium analysis shown in the middle and right 
panels in Figure 3.3, which are based on employing an isotropic and an anisotropic background 
error covariance matrix, respectively. In the isotropic case (middle) the observations induce 
corrections to the background field that are propagated isotropically from the observation sites into 
the surrounding region. By contrast, in the anisotropic case (right) the propagation of the correction 
to the background field is inhibited land-inwards and enhanced over the sea. Thus we efficiently 
account for the empirical fact that the representativeness of base cation observations decreases 
from coastal sites land inwards. 

This kind of data analysis is carried out operationally for daily averaged concentrations in air and 
monthly averaged concentrations in precipitation of Na+, Ca2+, Mg2+, and K+. The background field 
is computed by the MATCH seasalt model. 

The analysis results for sulphur and nitrogen compounds as well as for base cations are used as 
input to the MATCH deposition module for computing critical loads. The results of the deposition 
computations are published on SMHI‟s websites (www.smhi.se, -> miljö, -> atmosfärskemi). 

3.3.4 Aerosol optical depth 

As a pilot study for assimilating remote sensing information we combined the results from the 
MATCH photochemistry, seasalt, and primary particulate matter (PPM) models with computations 
of aerosol optical properties. As a result we obtain from the MATCH results profiles of differential 
extinction optical depth and aerosol backscattering coefficient, as well as column-accumulated 
extinction optical depth. The results can be compared with sunphotometer and lidar observations.  

 

http://www.smhi.se/
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Figure 3.4. Aerosol optical depth computed from the MATCH photochemistry, sea salt, and PPM 
models (left), and data analysis result (right). Only one observation from the AERONET station on 
Gotland had been available for the analysis. 

 

In Figure 3.4 a data analysis of sunphotometer observations of accumulated extinction optical 
depth (OD) is shown. Figure 3.5 shows a time series of OD observations, model results, and 
analysis results for the AERONET station on Gotland. The study illustrates the suitability of the 
model to be used for computation of optical properties, and the capability of data assimilation 
techniques to improve the model results. However, the current uni-variate version of the data 
analysis module is not capable of producing corrected concentration fields of particulate pollutants 
from the data analysis of optical parameters. To this end a multi-variate extention of the code will 
have to be implemented. 

One can further see in Figure 3.5 that the currently used 2dvar data analysis methodology only 
yields a correction of the background at those times at which observations become available. This 
is because the 2dvar analysis method performs a post-processing of model results. A full data 
assimilation system would combine the data analysis process with the model integration over time, 
thus propagating the information from the observations not just out into a spatial region around the 
observation site, but also spreading the information in time. 
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Figure 3.5: Upper panel: comparison of observed (blue) and modelled (pink) aerosol extinction 
optical depth at 500 nm on Gotland. Lower panel: Corresponding comparison of observations 
(blue) and data analysis results (pink). Note that the straight lines in the observation time series 
indicate data void regions. Thus the analysis relies on the background field during these periods. 

 

3.4 Future outlook 

The current operational analysis system has a number of weak points. We run a uni-variate 
analysis with a background error covariance matrix modelled by  

22

, 2/)(exp jiji xxAB , 

or, for base cations, by  

T

bc CBCB , 

where C is a diagonal matrix containing the coast class correction factors, and where xi denote the 
elements of the state vector. This approach yields analysed fields that are, in general, not 
consistent with the governing equations. Also, the method is not capable of exploiting information 
from one observed species to obtain corrections for chemically correlated species. It would be 
desirable to extend the current method to a multi-variate analysis that employs a background error 
covariance matrix based on the model‟s statistical properties. This would (i) yield a more “correct” 
analysis result, (ii) ensure consistency with the governing equations, which would prepare the 
analysis code to be extended to a full 4dvar version, and (iii) allow us to use observations available 
with high spatial and temporal resolution (such as ozone) to correct the background field for 
correlated species (such as NOx) for which fewer observations are available.  

As already suggested, it would be an asset if the information from available observations would 
not only be propagated out in space but also in time. This would require a four-dimensional data 
assimilation system, such as 4dvar or an ensemble Kalman filter.  
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4. Statistical interpolation with the DEOM model for ozone forecasting 

Contribution from NERI 

 

Abstract 

In this chapter experiments with a statistical Interpolation algorithm applied in the DEOM model at 
NERI is described. The algorithm has been developed and optimized via nine different 
experiments where different model setups have been tested. The results from each experiment 
have been validated against measurements from the EMEP network. The best performing setup of 
the data assimilation algorithm has been found and will be used in the further application of the 
technique at NERI. The results will eventually be used in the THOR operational air pollution 
forecast system. The data assimilation technique used in this chapter is described in more detail in 
Frydendall, (2006); Frydendall and Brandt (2006) and Frydendall et al., (2007) 

 

4.1 Introduction 

Data assimilation has been introduced in air pollution models with good results over the last few 
years. Various scientific communities have developed and used different data assimilation 
techniques. A research group at Atmospheric Chemistry Division, National Center for Atmospheric 
Research, Boulder, USA used an Optimum Interpolation routine (Lamarque et al., 1999) to 
investigate CO in the troposphere. At the Data Assimilation Office, NASA Goddard Space Flight 
Center USA, a group has used a Kalman Filter to investigate chemical tracers (Ménard and 
Chang, 2000; Ménard et al., 2000). At the University of Cologne, Germany, a 4-DVar routine for 
atmospheric chemistry modelling have been developed (Elbern et al., 1997; Elbern and Schmidt 
1999; Elbern et al., 2000). At the Delft University of Technology, Netherlands, a Kalman Filter has 
been developed (van Loon and Heemink, 1997) for atmospheric chemistry modelling. At the 
French meteorology laboratory an Optimum Interpolation routine for ozone analyses has been 
developed (Blond et al., 2003; Blond and Vautard, 2003). At NERI, Denmark, a four dimensional 
variational method is under development (See chapter 5) and Zlatev and Brandt (2006). 
 
A general problem in chemical data assimilation is that usually only ground based observation are 
available to assimilate. This is of course a problem since the vertical distribution of the chemical 
species is not included in the measurements. Furthermore, many of the chemical species are only 
measured as daily mean values and not as hourly values as be would be preferable. New types of 
data on chemical species are now available from satellite observations. However, this makes data 
assimilation more challenging since satellite observations are often filled with spatial and temporal 
holes (P.F.Levelt et al., 1998; Khattatovet al., 2000; 2001). 
 

4.2 The Chemical Transport Model DEOM 

The Danish Eulerian Operational Model (DEOM) (Brandt et al., 2001a; 2001b, 2001c; 2003) was 
developed at NERI for air pollution modelling, forecasting and assessment. The domain of DEOM 
is covering Europe and constructed so that it is covered by the domain of the numerical weather 
forecast model Eta also applied at NERI for 3-days forecasting. The Eta model is discretized on a 
staggered latitude/longitude system with shifted pole. The horizontal grid resolution is 0.25o × 0.25o 
corresponding to approximately 39 km × 39 km at 60oN. The number of horizontal grid points is 
104 × 175 and the number of vertical layers is 32. The DEOM model is applied on a polar 
stereographic projection. The horizontal grid resolution is 50 km × 50 km at 60oN. The number of 
grid points is 96 × 96. Three vertical layers are used in the DEOM model. The three layers are 
defined as a mixed layer (below the mixing height), a reservoir layer between the mixing height 
and the advected mixing height from the previous day and a top layer representing the free 
troposphere. The model has previously been included in inter-comparison exercises showing good 
results (see e.g. Tilmes et al., 2002).  
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The DEOM model calculates transport, dispersion, deposition and chemistry of 35 species. A 
splitting procedure, based on the ideas of McRae et al. (1982), is applied. The horizontal transport 
is discretized using an accurate space derivative algorithm. Time integration is performed with a 
predictor corrector scheme with several correctors. For the horizontal dispersion, truncated Fourier 
series approximate the concentrations. Dry and wet depositions are computed directly using 
simple parameterizations. The chemical scheme used in the model is the CBM-IV scheme with 35 
species. Chemistry is solved using the QSSA method (Hesstvedt et al., 1978). The DEOM model 
is a part of the THOR integrated model system (Brandt et al., 2001a; 2001b; 2001c; 2003) along 
with other models. One of the main goals with the THOR system is to carry out air pollution 
forecasts at all scales - from the northern hemisphere scale, over European scale and the urban 
background scale down to the street level at both sides of the streets. The data assimilation 
routine developed in this study will go into the THOR system between the measured data and the 
regional chemical transport model DEOM, in this case covering the European domain.  
 

4.3 The Assimilation experiments 

In these experiments, the data assimilation algorithm is implemented into DEOM and the effect of 
applying the algorithm is tested against measurements. However, before the implementation 
DEOM was run for the testing period of April to September, 1999, to make a reference analysis. 
The testing period was chosen because it was a well documented period with several ozone 
episodes and a relatively large temporal/spatial coverage of the measurements from the EMEP 
network.  

The tests will in this study be concentrated on the daily maximum values of ozone concentrations. 
The DEOM model is traditionally good in predicting the daily maximum values, which means that 
the background field from the DEOM model will be less erroneous, compared to other parameters. 
It is believed that the data assimilation will decrease the bias and increase the correlation and 
hence decrease the normalized mean square error, when compared to the measurements.  

The measurement data from the EMEP ozone network includes 207 observation stations within 
the DEOM model grid. All the tests will be conducted month for month over the entire period. The 
data assimilation routine is activated once every day at 12 UTC, unless otherwise stated in the 
description of the tests. The analyzed model fields are compared to the same observation stations 
that are used in the data assimilation analysis, but at a different time. The comparison is made for 
the daily maximum ozone concentration, which usually takes place 4-6 hours (at 16 UTC - 18 
UTC) later than when the assimilation procedure was conducted. This gives a separation in time 
between the assimilation time and the actual comparison time of 4-6 hours.  

Nine different tests will be performed with the data assimilation algorithm implemented in DEOM, 
the nine tests are:  

(1) The reference run of the DEOM model without the data assimilation routine. 

(2) The assimilation algorithm will be conducted with the correlation function given by 
(Balgovin et al., 1983; Daley, 1996) 

 

  Using equal weights i.e. 
2

b =1 , 
2

o  = 1 and L = 3 

(3) Run with optimal weights found by the Hollingsworth method (see, e.g. Daley, 1996) 

(4) As (3) with the assimilation routine activated three times a day, on 10 UTC, 11 UTC and 12 
UTC. 
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(5) Run with an anisotropic correlation function depending on the wind direction with 
determined weights. 

(6) As (3) with the correlation function taking into account the density of observations by 

 . 

where  δ is the number of stations (between 1 and 8) (Hoelzemann et al., 2001). 

(7) As (5) + (6) with one assimilation per day at 12 UTC. 

(8) As (7) with the assimilation routine activated three times a day, on 10 UTC, 11 UTC and 12 
UTC. 

(9) Run with the correlation function in (3) with optimal weights (4) adjusted with the formula in 
(6) and with the assimilation routine activated three times a day, on 10 UTC, 11 UTC and 
12 UTC. 

 

4.4 The assimilation initialisation and test setup 

It was decided to use six months from April to September in 1999 as our test period. The results 
from these runs are described in detail in Frydendall, (2006); Frydendall et al., (2007). In the tests 
the model results are compared to measurements and the improvements relative to the reference 
run without the data assimilation are examined. It should be clear that improvements in the 
correlation and bias should be found, since the discrepancy between the observations and the 
model results have been added to the model with a weight function. This procedure will 
automatically increase the correlation and the bias with the observations. Another way of 
evaluating the assimilation process could be to use only half of the observation stations in the data 
assimilation and use the other half as control/validation stations. This approach should give some 
information about the spatial separation that arises from the missing observation stations and the 
stations that are include in the analysis. When the analysis is compared to the observation stations 
that were exclude in the analysis, the improvement in the analysis field should be seen. However, 
as mentioned above, the time separation between the observations used for assimilation and the 
observations used for validation for the daily ozone maximum should be large enough to avoid 
problems since the ozone concentrations are transported and chemical produced in the model 
domain. 

 

4.5 The tests and their ranks 

The DEOM model was run for all nine tests. The model results were compared to measurements 
and statistics were calculated for every test. The statistics are the correlation coefficient, the 
student‟s t-test for significance of the correlation coefficient, the fractional bias and the normalized 
mean square error. The daily maximum value of ozone was examined in the following different 
ways:  
 

1) The daily maximum value as mean of all stations, where all the observation stations and 
calculated values are averaged over space for every day and plotted as function of time. 

2) The daily maximum value including the observations and calculated daily maximum values 
for all times and locations 

3) The mean of the daily maximum value at each station, where the observations and the 
calculated daily maximum values for all stations are averaged in time.  

4) Daily mean values including all days and stations, and 
5) Daily mean values for all stations, where the observations and the calculated daily 

maximum values for all stations are averaged in time. 
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The great number of statistics from the different assimilation scenarios made the comparison a big 
task. Therefore a ranking system was used to determine the best performing model setup. In the 
ranking system the ranks were assigned the number 1 to the best statistic, 2 to the second best, 
and so on up 10. If two statistics had the same value it got the same rank, and the successive rank 
was skipped. Only the corresponding statistics were compared with each other. In the end, the 
best assimilation setup from the rank could be determined.  Details of all the tests including the 
statistics can be found in Frydendall, (2006). 
 
Overall, it is found that the last assimilation test 9) is the best including the combination of varying 
the correlation length according to the number adjacent observations station and the assimilation 
routine applied at three successive hours. Having a variable correlation length increases the 
correlation for stations that are adjacent. Furthermore, the weights have been determined using 
the weights found by the Hollingsworth method. 
 
The tests 7) and 8) showed a less good performance. This is due to the anisotropic error 
covariance matrix depending on the wind direction, which is destroying the signal from the 
observations stations to the model.  
 
To summarize the results, the results from the reference and from the best performing model 
results (test 9) are shown in table 4.1. In the table the improvement achieved by the data 
assimilation is evident. It can be seen that the correlation coefficient e.g. is improved by 0.27 for 
the daily mean values including all days and stations. All in all, the data assimilation improves all 
statistical parameters for the forecasted daily maximum ozone concentrations. 
 
Table 4.1. The summarized results for ozone from the reference run without data assimilation and 
test (9) are shown for the entire period April – September 1999. 

 Correlation 
coefficient 

Students  
t-test 

Fractional 
bias 

NMSE 
 

Reference Daily maximum day by day as 
averaged over stations 

0.86 22.86 5.2E-03 3.1E-03 

Test (9) 0.96 45.08 3.4E-03 1.0E-03 

Reference Daily maximum including all days 
and stations 

0.62 101.48 5.2E-03 4.5E-02 

Test (9) 0.76 152.15 3.4E-03 2.8E-02 

Reference Mean of daily maximum for each 
station 

0.67 8.70 4.6E-03 9.1E-03 

Test (9) 0.81 13.22 3.0E-03 3.0E-03 

Reference Daily mean values including all 
days and stations 

0.49 69.88 0.156 8.7E-02 

Test (9) 0.68 Nan 0.129 5.8E-02 

Reference Daily mean values averaged over 
time for all stations 

0.37 3.77 0.154 4.8E-02 

Test (9) 0.58 6.79 0.128 3.5E-02 

 

4.6 Analysis of two ozone episodes 

In this section, two ozone episodes that occurred on September 7, 1999 and September 12, 1999 
will be examined. The effect of using the data assimilation algorithm is compared to the reference 
run where no data assimilation is applied. The setup described in test (9) is used. The results are 
presented in figure 4.1, where the reference run is shown in the left column and the analyzed fields 
in the right column. Both runs are continuous, started on September 1st, with initial data from a 
previous run for the month before. In the model run using the data assimilation, the data is 
assimilated each day at 10 UTC, 11 UTC and 12 UTC. For both episodes there are some 
differences between the reference and the analyzed fields especially for September 12th, where 
the ozone concentrations in the Mediterranean area are decreased. In this area the assimilation 
routine has pulled the concentration level down. Also in central Europe ozone concentration levels 
are lower compared to the reference. In the Scandinavian region the ozone concentration levels 
also have decreased in both episodes. In general we see that the DEOM model had an 
overestimation of ozone concentration for these two days in September. The data assimilation 
routine corrected the calculations to match the measurements  
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Figure 4.1. Daily maximum ozone concentrations calculated using DEOM for two different days 
during an ozone episode in Europe in September 1999. The left figures are the reference run 
without using data assimilation. The right figures are the corresponding result including the data 
assimilation technique based on the setup used in 9). The upper figures show the situation on 
September 7, 1999 and the lower figure show the situation on September 12, 1999. Especially 
around the first episode (top figures) the effect of data assimilation is seen, while during the 
second episode, the ozone field is less changed by the algorithm. 
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4.7 Conclusions 

The first results with the data assimilation routine based on Statistical Interpolation have been 
conducted with the DEOM model. Nine different experiments including different setup of the data 
assimilation algorithm were defined and tested against measurements and ranked according to the 
performance. The results from the experiments have shown that the data assimilation routine 
together with a CTM are beneficial for obtaining better performance of the short term ozone 
forecasts using the CTM model. Improvement in the correlation coefficients in the range of 0.1 to 
0.27 between the reference and scenario (9) were seen. Additionally, there were significant 
reductions of bias and NMSE. 
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5. Using a set of test-examples to study some properties of variational 
data assimilation algorithms  

Contribution from NERI 

 

Abstract 

Variational data assimilation algorithms can successfully be used in different fields of science and 
engineering. An attempt to utilize available sets of observations in the efforts to improve (i) the 
models used to study different phenomena and/or (ii) the model results can systematically be 
carried out when data assimilation algorithms are used. 
  
The main idea, on which the variational data assimilation algorithms are based, is pretty general.  
A functional is formed by using a weighted inner product of differences of model results and 
measurements. The value of this functional is to be minimized. Forward and backward 
computations are carried out by using the model under consideration and its adjoint equations 
(both the model and its adjoint are defined by systems of differential equations). The major 
difficulty is caused by the huge increase of both the computational load (normally by a factor more 
than 100) and the storage needed. This is why it might be appropriate to apply some splitting 
procedure in the efforts to reduce the computational work. 
  
Five test-examples have been created. Different numerical aspects of the data assimilation 
algorithms and the interplay between the major computational parts of any data assimilation 
algorithm (numerical algorithms for solving differential equations, splitting procedures and 
optimization algorithms) have been studied by using these tests. The presentation will include 
results from testing carried out in the study. 
 

5.1 Basic ideas 

Assume that observations are available at time-points P...,,2,1,0p,tp . These observations 

can be taken into account in an attempt to improve in some sense the results obtained by a given 
model. This can be done by minimizing the value of the following functional (see [7]): 
 

,cc,cctW
2

1
cJ)1(

P

0p

obs

pp

obs

ppp0  

  

where (a) the functional 0cJ  is depending on the initial value 0c  of the vector of the 

concentrations at time 0t  (because the model results pc  depend on 0c ), (b) ptW  is a matrix 

containing some  weights (it will be assumed here that ptW  is the identity matrix, but some 

weights have to be used in all practical problems) and (c) ,  is an inner product in an 

appropriately defined Hilbert space (it will be assumed in this paper that the usual vector space is 

used, i.e. it is assumed that 
s

c  where s   is the number of chemical species which are involved 

in the model). 
 

An optimization algorithm has to be used in order to minimize the functional 0cJ . Most of the 

optimization algorithms are based on the application of the gradient of 0cJ . The adjoint equation 

of the model under consideration has to be derived and used in the calculation of the gradient of 

the functional 0cJ . Most of the scientific and engineering models are described mathematically 

by systems of differential equations. Therefore the adjoint equations are also described by 
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systems of differential equations. This short analysis shows clearly that a data assimilation 
algorithm is a very complicated numerical procedure. The time and storage requirements are the 
major difficulty. Such a procedure consists of (i) a good optimization algorithm and (ii) good 
numerical algorithms for solving differential equations. In order to reduce the time and storage 
requirements it is also necessary (iii) to apply some good splitting technique. 
   

5.2 Need for a good set of test-examples 

The final aim is to apply the data assimilation technique to large-scale air pollution models for 
studying the transport of harmful air pollutants over Europe ([11], [12]). The ideas discussed here 
are very general and can successfully be applied in connection of many other models which lead 
(after some kind of semi-descretization) to stiff systems of ordinary differential equations (ODEs). 
Before applying a data assimilation algorithm to a given model it is necessary to check carefully (a) 
the correctness of its modules and (b) the efficiency of the numerical algorithms applied in the 
different modules. This can successfully be done only if good test-examples are available. The 
chemical part of an environmental model is normally the most time consuming part (and the most 
difficult one because it introduces stiffness in the model). This is why it is especially important to 
test carefully the correctness and the efficiency of the chemical part. The chemical part of an 
environmental model can be represented as a stiff system of ODEs: 
 

,c,)c,t(f
dt

cd
)2(

s
  

 

where vector c  contains s  components and function f is in general nonlinear. Five test-examples 

were devised (see [12]). We start with a very simple linear system. Then the complexity is 
gradually increased. The second test-example is a non-linear but autonomous system. The third 
test-example is a non-linear and non-autonomous system with a Jacobian matrix which does not 
depend explicitly on t . The fourth test-example is a non-linear and non-autonomous system with a 

Jacobian matrix which depends explicitly on t . The last test-example is a chemical scheme with 

56 chemical species, which is really used in many environmental models ([11], [12]). It is described 
by a non-linear and non-autonomous system of ODEs. Both the right-hand-side function and the 
Jacobian matrix depend on t . It is not possible to express the dependence on t  analytically, 

because some chemical rates depend on some quantities (as, for example, the temperature) 
which are dependent on the time variable. Analytical solution is not available, but a reference 

solution has been calculated with a time-stepsize 
5

10t . The values of this solution were 

saved at the end of every period of 15 min. The so-found reference solution is used to check the 
accuracy achieved in different runs.  
 
The first four examples are taken from the book of Lambert ([5]), while the fifth example is, as 
mentioned above, similar to the schemes used in the EMEP models (see [9], [11] and [12]). 
 

5.3 Calculating the gradient of the functional 

It is convenient to explain the basic ideas that are used when the gradient of 0cJ  is calculated 

by the following very simple example. Assume that observations are available only at five time-

points: 3210 t,t,t,t  and 4t . The gradient of the functional can be calculated in the following 

way. Assume that some tool, model, by which the values of the unknown vectors 

)t(c,)t(c,)t(c,)t(c 3210  and )t(c 4 can be calculated, is available. The tool, the model, can be, 

for example, some air pollution model, but in some simpler cases model can simply refer to some 
solver for systems of PDEs or ODEs. Under this assumption, the calculations have to be 

performed, for the particular example with 4P , in five consecutive steps. 
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 Step 1. Use the model to calculate 
1c  (performing integration, in a forward mode, from 

time-point 0t  to time-point 1t ). Calculate the adjoint variable 
obs

111 ccq . Form the 

adjoint equation (corresponding to the model used in the forward mode; adjoint equations 
will be discussed in Section 5). Perform backward integration (by applying the adjoint 

equation) from time-point 1t  to time-point 0t  to calculate the vector 
1

0q , where the lower 

index shows that 
1

0q  is calculated at time-point 0t , while the upper index shows that 
1

0q  is 

obtained by using 
obs

111 ccq  as an initial vector in the backward integration. 

 

 Step 2 to Step 4. Perform the same type of calculations, as those in Step 1 to obtain 
2

0q , 

3

0q  and 
4

0q . More precisely, the following operations are to be carried out for 4,3,2p : 

(a) use the forward mode to proceed from time-point 
1pt  to time-point 

pt , 

(b) form the adjoint variable 
obs

ppp ccq , 

(c) use the adjoint equation in a backward mode from time-point pt to time-point 0t  to 

calculate 
p

0q . 

 

 Step 5. The sum of the vectors 
1

0q , 
2

0q , 
3

0q , 
4

0q  obtained in Step 1 to Step 4 and vector 

0

00

0

0 ccq  gives an approximation to the required gradient of the functional 0cJ . 

 

It is clear that the above procedure can easily be extended for any number  P  of time-points at 
which observations are available. 
  

The gradient of the functional 0cJ  is calculated by performing one forward step from time-point 

0t  to time-point Pt  and P  backward steps from time-points P...,,2,1p,tp , to time-point 0t . 

This explains the main idea, on which the data assimilation algorithms are based, in a very clear 

way, but it is expensive when P  is large. In fact, the computational work can be reduced, 
performing only once the backward calculations (see, for example, [1] or [7]). 
 
 

5.4 Solving the system of ODEs 

Six numerical algorithms for solving stiff systems of ODEs have been used in the experiments. The 
algorithms selected by us are listed below: 

 the Backward Euler Algorithm, 

 the Implicit Mid-point Rule, 

 a Second-order Modified Diagonally Implicit Runge-Kutta Algorithm, 

 a Fifth-order Three-stage Fully Implicit Runge-Kutta Algorithm, 

 a Second-order Two-stage Rosenbrock Algorithm, 

 the Trapezoidal Rule. 
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The Implicit Mid-point Rule and the Trapezoidal Rule are A-stable algorithms. All the other 
algorithms are L-stable. More details about the selected numerical algorithms and their properties 
can be found in [3], [4], [5] and [10]. 
 

5.5 Solving the adjoint equations 

It is necessary to distinguish between linear models and non-linear models when the adjoint 
equations are formed and treated numerically. Assume that the model is linear and, furthermore, 
that the model is written in the following general form: 
  

.cA
dt

cd
)3(  

 
Denote by q  the adjoint variable.  Then the adjoint equation can be written as 

 

,qA
dt

qd
)4(  

 

where A  is the conjugate operator of A . If the problem is discretized by using some numerical 

algorithm, then operator A  will be represented by a matrix which is normally also denoted by A . If 

the adjoint equation is discretized, then the transposed matrix 
T

A  will appear in the discretized 
version of (4). 
 
Consider now a non-linear model: 

.)c(B
dt

cd
)5(  

 
The adjoint equation of the model presented in (5) can be written as 
 

,q)c('B
dt

qd
)6(  

 

where )c('B  is obtained by differentiation of B . In the discrete case, we will have the transposed 

matrix of the Jacobian of B  in (6).  
 
It is seen that the adjoint equations are always linear; compare (4) and (6). However, the right-
hand-side in the linear case does not depend on the model variable c . In the non-linear case this 

is not true. The right-hand-side of (6) depends on c . This fact has serious implications: the values 

of c  calculated during the forward mode (when the model is treated) are to be saved and used 

when the adjoint equation is handled (when the backward mode is carried out). 
 
If the chemical scheme (2) is considered, then (6) can be rewritten as 
 

.q
c

)c,t(f

dt

qd
)7(

T

 

 
It is clear now that the numerical algorithms from the previous section can easily be adapted for 
the adjoint equation (7) of the chemical scheme (2). For example, the application of the Backward 
Euler Algorithm in connection with adjoint equation (7) leads to the following formula for the 
backward computations: 
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The fact that the adjoint equation is used in the backward mode is taken into account when (8) is 
derived. 
 

5.6 Application of splitting procedures 

The application of data assimilation algorithms leads to very time-consuming problems (the 
computer time may be increased by a factor up to 100 and even more). Therefore splitting, which 
is commonly used during the treatment of large-scale environmental models, is even more needed 
when these are used together with data assimilation techniques. The test-examples, which are 
discussed in Section 2, were treated both without splitting and with by four splitting procedures: (i) 
sequential splitting, (ii) symmetric splitting, (iii) weighted sequential splitting and (iv) weighted 
symmetric splitting. Much more details about different splitting procedures can be found in [12]. 
 
The splitting of each of the first four test-examples is not very critical. Let us consider as an 
example the splitting applied in connection with the second test-example. The operator on the 

right-hand-side of this example is ,yf 21 1222 y/)1y(yf  (where 1y  and 2y  are the 

components of vector c . It is split into two operators: (a) ,0f
)1(

1  
)1(

1

)1(

2

)1(

2 y/yf  and (b) 

,yf
)2(

2

)2(

1  
)2(

1

2)2(

2

)2(

2 y/)y(f . The sum of these two operators is equal, component-wise, to the 

original operator in the right-hand-side of the second test-example (i.e. 1

)2(

1

)1(

1 fff  and 

2

)2(

2

)1(

2 fff ). 

 
It is not very obvious how to split the fifth test-example. We grouped in the first sub-model the 
species which react with ozone. The remaining species formed the second sub-model. 
 
At each time-step during the forward mode the splitting was carried out as usual (see, for example, 
[11] and [12]). At each time-step during the backward mode the splitting operators are applied in 
reverse order (compared with the order applied in the corresponding forward time-step). 
 

5.7 Minimizing the functional 

The problem of minimizing the functional (1) is an unconstrained optimization problem. Therefore, 
the subroutine E04DGF from the NAG Library, which performs unconstrained optimization, has 
been used in the beginning ([12]). However, we realized very quickly that it is better to impose 
some constraints. There are often physical reasons for doing this (in the chemical scheme, for 
example, the concentrations of the chemical species should be kept non-negative). Therefore, the 
next choice was subroutine E04KDF also from the NAG Library. This is a rather flexible 
subroutine. It requires simple bounds for the variables of the functional. It is quite reasonable to 
assume that such bounds could always be derived in real-life problems (by using the physical 
properties of the studied processes). 
 
The problem with subroutine E04KDF is not the determination of the bounds for the variables, but 
rather the necessity to scale the model, which is very often a rather difficult task. Unfortunately, 
such a requirement is, to our knowledge, common for all optimization algorithms. 
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5.8 Numerical results 

Only the ability of the data assimilation algorithms to improve the initial values of the solution 
was tested numerically. This is important for forecasting high pollution levels. However, the data 
assimilation algorithms can also be used for many other purposes (see, [1], [2], [6], [8], [12]). 
 
A perturbation parameter  was introduced. The values of the initial solution were always 

perturbed by using ten different values of   (introducing relative errors of %50,,%10,%5   in 

the initial values). Data assimilation is used to improve the initial values. The improved initial 
values are then used to calculate the solution over an increased time-interval. The analytical 
solution (the reference solution for the fifth test-example) is used to evaluate the relative error, 
component-wise, at the end of each time-step (each period of 15 min. for the fifth test-example). 
The max-norm of the vector or relative errors found over the whole time-interval is taken and used 
in the comparisons of the results from the different runs. 
 
Each test-example has been run with the six numerical algorithms and the five splitting procedures 
(including here also the case where no splitting is used). Furthermore, for the first four test-

examples we start with a time-stepsize 25.0t  and carry out successively 18 additional runs 

(every time reducing the time-stepsize by a factor of two). For the fifth test-example we start with a 

time-stepsize 150t  and carry out successively 10 additional runs (reducing again the time-

stepsize by a factor of two every time when a new run is started). 
 
The results from many runs ([12]) show that (i) reducing the time-stepsize leads to a reduction of 
the error according to the order of the combined algorithm (numerical algorithm + splitting 
procedure), (ii) if the time-stepsize is sufficiently small then the error obtained with the data 
assimilation algorithm is practically the same as the error obtained by using exact initial values 
without data assimilation (which means that the results are optimal in some sense), (iii) the 
numerical algorithms that are only A-stable (the Implicit Mid-Point Rule and the Trapezoidal Rule; 
see [3] and [5]) have difficulties for large time-stepsizes when the stiff chemical scheme is to be 
handle and (iv) if no splitting is used, then it might be more efficient in some cases to use high-
order algorithms (the Fifth-order Three-stage Fully Implicit Runge-Kutta Algorithm performed 
better, for all five test-examples, than the other algorithms when no splitting was used). 
 
It should be emphasized here that the stability problems, which were mentioned in (iii), disappear 
when some splitting procedures are used ([12]). Since the chemical scheme is a rather general 
and sufficiently large problem, this fact indicates that the splitting procedures may have some 
stabilizing effect when stiff systems of ODEs are to be handled.  
 
Some results, which were obtained in the efforts to improve the initial value and the accuracy of 
the ozone component in the scheme with 56 chemical species, are presented in Table 5.1. The 

notation can be explained in the following way: (a) P_0_ERROR  is giving the relative error in 

the perturbed initial condition, (b) I_0_ERROR  is giving the relative error in the improved initial 

condition, (c) P_F_ERROR  is giving the global relative error obtained by using the perturbed 

initial condition, (d) I_F_ERROR  is giving the global relative error obtained by using the 

improved initial condition. 
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Table 5.1. Numerical results obtained when the chemical scheme with 56 compounds is run. The 
Backward Euler Algorithm is used without splitting. The initial value of the ozone concentration is 

perturbed by a factor .5.0  

Steps P_0_ERROR  P_F_ERROR  I_0_ERROR  I_F_ERROR  

1008 0.47 0.48 2.0E-03 2.4E-03 

2016 0.49 0.50 1.0E-03 1.2E-03 

4032 0.47 0.47 5.0E-04 6.1E-4 

8064 0.48 0.48 2.5E-04 3.2E-04 

16128 0.46 0.48 1.3E-04 1.7E-04 

32256 0.49 0.48 6.3E-05 8.8E-05 

 
It is clearly seen that reducing the stepsize (i.e. multiplying the number of time-steps by a factor of 
two) leads to a reduction of both the initial guess and the global error by a factor of two. This is 
precisely the expected behaviour (because the Backward Euler Algorithm is of order one). Much 
more numerical results might be found in [12]. Recently an extended series of tests with a two-
dimensional advection-diffusion-chemistry model has been run. Paper, describing these 
results, is in preparation. 
 

5.9 Conclusions 

The results from several thousand runs indicate that the data assimilation modules are able to 
improve the initial values of the solution if (a) the numerical algorithms used are sufficiently 
accurate and (b) the initial perturbations are not very large. 
 
On the other hand, the results indicate also that both the computing time and the storage needed 
are increased by a factor which is very often greater than 100. Therefore, it is necessary (i) to 
continue the search for faster but still sufficiently accurate numerical algorithms, (ii) to apply faster 
computers, (iii) to exploit efficiently the cache memory and (iv) to parallelize the codes. 
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6. International workshop on data assimilation with regional scale 
atmospheric chemical transport models 

The workshop on „Data assimilation in regional scale atmospheric chemistry models‟ was held at 
NILU on 15 November, 2005, halfway through the project. More than 20 participants attended the 
one day workshop from the institutes involved and 8 scientific presentations were given. Two 
invited speakers, Hendrik Elbern and Arnold Heemink, who are experts in data assimilation 
methods also attended, providing valuable input and discussion. The report from the workshop has 
already been submitted as part of the first years reporting (Denby et al., 2006). 

6.1 Summary 

This workshop was organized as the first activity of the NMR funded project on „Data assimilation 
in regional scale atmospheric chemical models‟. The aim of the workshop was to establish links 
between the participating institutes (NILU, DMU, SMHI, met.no) and plan and co-ordinate future 
activities. Presentations by all the institutes were given to establish the methodologies currently 
employed, the level of expertise and the future research intentions of the participating institutions. 
In addition two invited speakers attended the workshop, Henrik Elbern and Arnold Heemink, who 
are acknowledged experts in the field of data assimilation in chemical transport modelling. Their 
attendance was vital to help place the work in a European perspective and for their critical 
appraisal and first hand knowledge of the techniques currently employed. 

The workshop was held at NILU on 15 November 2005. 8 separate presentations were given with 
a large amount of time devoted to discussion (see attached agenda). In total up to 21 people 
participated in the workshop. 11 from the participating institutes who are directly involved with the 
project, 2 invited speakers and a number of interested parties from both NILU and met.no. A list of 
participants is also included. Discussions ranged from the very technical to the philosophical with a 
number of recommendations for methodologies and problem solving being discussed. 

The presentations from the project participants have been consolidated for this report, which will 
be used as reference for further development and cooperation. The presentations from the invited 
speakers have been summarized, with the presented slides contained in an appendix. At the end 
of each presentation is a table containing some of the discussion points brought up during the 
meeting. 

 

6.2 Workshop agenda 

 
09:30  Introduction and welcome 

Bruce Denby, NILU 

Satellite data 

09:45   The GEMS project 

Leonor Tarrason, Met.no 

10:00   Availability of Satellite Remote Sensing images of Atmospheric Species 

Martin Hvidberg, DMU 

Variational methods 

10:30   Development and implementation of a simple data assimilation algorithm 

Jan Frydendall, DMU 

11:00   Applying variational data assimilation for an atmospheric chemical scheme 

Zahari Zlatev, DMU 

11:30  COFFEE BREAK 

11:45   Application of 2-dimensional variational data analysis in MATCH 

Michael Kahnert, SMHI 

12:15  Implementation and performance experiences with chemical 4Dvar assimilation 

Hendrik Elbern, EURAD, Cologne 



47 

 

NILU OR 30/2007 

12:45   LUNCH 

13:30   Discussion 

Ensemble methods 

14:30   An introduction to Sequential Importance Resampling 

Sam Erik Walker, NILU 

15:00  Data assimilation in atmospheric chemistry models using ensemble methods 

Arnold Heemink, TU Delft 

15:30   Discussion 

Project discussion 

16:30   NMR project: Conclusions to be drawn from this workshop and future work 

  All 

17:00   End workshop 
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