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Abstract. In the assessment of exposure to air pollution, individual behavioural patterns have a 
significant influence on daily exposure. The average exposure of an individual person over a time 
period is estimated by the sum of the ambient air pollutant concentration ci multiplied by the time 
fraction ti an individual spends at each location or microenvironment (ME) i. Time use statistics 
are essential for estimating the time fraction per ME.  

In HEIMTSA, a European project on integrated health assessment, individuals’ exposure to out-
door air pollution is modelled for Europe. For the model approach, the Multinational Time Use 
Survey (MTUS) data provides a harmonised set of national European time activity data. These ac-
tivities are classified into the time individuals spend in five MEs: Home, Work, Outdoor, Trans-
portation, and Other. The air pollutants’ concentration in these microenvironments is calculated by 
environment specific infiltration factors and the modelled outdoor concentration. 

The time activity approach allows the comparison of policy scenarios influencing behaviour and 
infiltration factors. Demographical and activity-based grouping, generated with clustering tech-
niques, were compared as predictor variables for exposure. The results imply that demographical 
factors solely are not good predictors for exposure and that differences between countries exceed 
differences between demographic groups depending on the choice of infiltration factors. Although 
activity-based clusters are difficult to describe by socio-economic parameters, exposure and policy 
impacts are differentiated better. This approach could be useful to compare policy impacts and 
highlight extremely exposed subgroups in European countries. 
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INTRODUCTION 

The assessment of health burdens caused by ambient air pollution has previously been done 
by using ambient air quality, as measured at fixed site monitors, as an exposure proxy. Rela-
tionships between the concentration of, for instance particulate matter (PM), and the health 
responses of the population were demonstrated by large scale studies like the American Can-
cer Society Study (Pope et al., 2002) and Harvard Six Cities Study (Dockery et al., 1993). In 
fact, the true exposure of individuals can vary considerably over a population, depending on 
individuals’ behaviour and whereabouts. Exposure differs from ambient air quality because it 
describes the pollutant concentration in the environment that an individual comes into direct 
contact with. A person’s exposure consists of multiple microenvironmental exposures.  A mi-
croenvironment (ME) refers to a location or surroundings that a person spends time in and 
where the air pollutant concentrations are treated as homogenous (e.g. IPCS 2004). If we 
know the pollutant concentration ci and the fraction of time  ti per day spent by an individual 
in each ME i, the average exposure E can be expressed as:  
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Modelling exposures in this way is considered an indirect exposure assessment approach 
(Klepeis 1999), as it does not directly measure a person’s exposure. As one can see, variabil-
ity in exposures depends on the variability in microenvironment concentrations and individu-
als’ time activity patterns. The concentration ci can be estimated by models or derived from 
measurement studies and combined with the time fraction ti extracted from time-use diaries. 
The concentration in MEs varies over space and time as the emissions and distributions of air 
pollutants are not constant. Variability in time activity patterns also occurs in two dimensions: 
cross-sectionally between individuals or groups of individuals, and longitudinally, across 
time.  One example of exposure models is presented by Zidek et al. (2005). The stochastic 
model pCNEM includes measurements of outdoor concentrations and parameter distributions 
for modelling the indoor concentration as well as US activity data from the National Human 
Activity Patterns Survey (NHAPS, Klepeis et al. 2001) to estimate the exposure probability 
distribution for a random individual in the population. Another example is HAPEM (Özkay-
nak et al., 2008) which is provided by the US EPA and calculates estimates of exposure to 
ambient air pollutants for stratified population groups, using an air pollution model, and prox-
imity and penetration factors to estimate ME concentrations.  
In HEIMTSA, a European 6th framework project on integrated health impact assessment, 
methods and tools for scenario assessment are developed to quantify and compare the magni-
tude of current and future health impacts from different European environmental policies. 
One important part of the HEIMTSA framework is the quantification of exposure to outdoor 
air pollution. This approach includes modelling individual exposure to ambient air pollution 
on a European scale using pollutant modelling techniques and time activity data. The aim is to 
provide a full chain model from emissions to exposure, including policy changes that could 
affect emissions and thereby concentrations, outdoor-to-indoor infiltration factors and human 
behaviour. To provide a model methodology for the whole of Europe, harmonised European 
time use data sets are combined with regional infiltration factor estimates. The change in ex-
posure by the latter two can be quantified by using an Exposure Scaling Factor (ESF).  
In this paper, we will present the exposure modelling methodology developed for HEIMTSA 
on the example of exposure to PM2.5 using the Multinational Time Use Survey (MTUS, 
http://www.timeuse.org/mtus/) diary data. To investigate the influence of human behaviour on 
the exposure results, two different grouping techniques for the time use data were tested and 
the resulting exposure distributions compared. As a conclusion, the potential use and limita-
tions of the approach will be discussed as well as potential future work. 

METHODOLOGY 

Exposure modelling 

To demonstrate the model approach, individual exposure to PM2.5 (fine particles, diameters 
<2.5 µm) will be considered. If the ME i in eq. 1 is an indoor environment, a mass balance 
model can be used to estimate the concentration indoors (Hänninen et al., 2004). In this 
model, the indoor concentration is composed of two sources: pollutant infiltration from out-
doors and pollution caused by indoor sources. As we are focussing on the exposure caused by 
ambient air pollution, the indoor concentration is expressed as a function of infiltrated out-
door concentration, ignoring the indoor sources: 
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where, a = the air exchange rate, p = the particle infiltration factor and k = the particle deposi-
tion rate. This infiltration factor Fi for the outdoor concentration Cout represents the fraction of 
particles from the outdoors that pass into the microenvironment, and therefore lies between 0 
and 1. Infiltration factors have been estimated for buildings in European cities in several stud-
ies, e.g. EXPOLIS (Hänninen et al., 2004) and RUPIOH (Hoek et al., 2008). The value of Fi 
depends on climate regions, housing types, ventilation systems and seasons. For travel MEs, a 
traffic enrichment factor is used which is usually larger than 1, as it reflects the relative con-
centration experienced in-traffic compared to the ambient background. Estimates of infiltra-
tion and traffic enrichment factors for the HEIMTSA exposure modelling are presented in the 
Modelling framework & implementation section.  

Combining the infiltration factors with the time spent in each ME we derive the Exposure 
Scaling Factor: 
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which is calculated per population sub-group s, country c and pollutant p across n microenvi-
ronments and with ti = time fraction of the day spent in ME i and E = traffic enrichment fac-
tor. The ESF is essentially a dimensionless scaling factor of the ambient concentration for the 
population living and working in each cell. ESFs are estimated using Monte Carlo modelling 
to generate distributions across the population.  

An exposure module is being developed for use with an existing air quality decision support 
system. For the estimation of the spatial distribution of hazardous air pollutants over Europe, 
the system EcoSense is applied. Detailed discussion of the model can be found in Krewitt et 
al. (1999). EcoSense calculates the dispersion and chemical transformation of the respective 
pollutant and has the advantage of applying emission reduction scenarios to estimate impacts 
of policies on the concentration. The applied model outputs are annual average concentrations 
on a 50 x 50 km² cell size raster (EMEP-grid). To estimate exposures to the modelled ambient 
concentrations, we apply the ESF to the ambient concentration per grid cell. We will focus in 
this work on the influence of time use on the ESF estimates. Further steps to exposures were 
presented in Kuhn et al. (2009) and will be omitted here. 

Time use data 

To estimate the time fraction spent in each ME, usually diaries are used. As HEIMTSA aims 
to assess health impacts for the whole EU-30, a harmonised data set for Europe is necessary 
to ensure comparability between countries. We decided to use the datasets of the Multina-
tional Time Use Survey (MTUS) which provides a set of national time use surveys in Europe. 
The available MTUS countries with data from the 1990s onwards are listed in Table 1, classi-
fied into regions based on sets of regional infiltration factors determined in Hänninen et al. 
(2009). MTUS includes 41 classified activities. As it is impossible to model the concentration 
for all 41 activities separately, we classified them into five MEs, namely work, home, travel, 
outdoor, and other. Unfortunately, the MTUS activity catalogue contains little information 
about the locations of the activities or travel modes which required the investigators to use 
subjective judgement as to which ME each activity would fit into. The preliminary categorisa-
tion is shown in Table 2. 

 

 



Table 1:Countries and number of diaries included in exposure model. 

Country  Region  Years of survey  No. of diaries 

Austria  Central Europe  1992  25’162 

France  Central Europe  1998/99  15’318 

Germany  Central Europe  1991/92, 2001/02  61’625 

Netherlands  Central Europe  1990, 1995, 2000  8’034 

Slovenia  Central Europe  2000/01  12’273 

Norway  Northern Europe  1990/91, 2000/01  13’804 

Sweden  Northern Europe  2000/01  7’747 

Italy  Mediterrean Europe  2002/03  52’206 

Spain  Mediterrean Europe  2002/03  46’774 

United  
Kingdom 

Northwestern 
Europe 

2000/01  20’980 

 

For exposure modelling, usually time activity diaries are classified according to demographic 
factors like age and gender (Özkaynak et al., 2008). This grouping can lead to the problem of 
large variance in the time use behaviour within the groups due to the heterogeneity of group 
compositions. McCurdy & Graham (2003) recommended distinguishing additionally between 
seasons, temperature, precipitation and day-type as these factors have been found to be influ-
ential in determining exposures. On the other hand, increasing the number of variables by 
which to classify the population leads to a larger number of groups with decreasing numbers 
of individuals.  This reduces the number of diaries available for simulation over a year-long 
period. As annual averages of air pollutant concentrations were applied, the time use pattern 
for a whole year was estimated by sampling diaries within each group to approximate the an-
nual average time spent per subgroup in each ME and preserve intra-individual variability. 
For consistency across the MTUS results, we chose to use only single day diaries, although 
some national studies provided diaries of several days. To avoid having small sample sizes 
per group, we decided to distinguish between gender (male/female), age (<15, 15-64, >65) 
and employment status (work/nonwork) for the middle age group, yielding eight cohorts. 
These are not only hypothesized to have differing time activity patterns, but are also similar to 
the types of stratification typically used in air pollution epidemiology studies. Thus, they may 
have more relevance for health impact assessments.  

When assessing differences in exposure due to behavioural changes induced by policies, one 
expects that the policy impacts would be much greater between population groups that are 
defined according to homogeneous behaviours. Following from this hypothesis, if the time 
use behaviour is too heterogeneously distributed within a single group, the policy effect in the 
population becomes less clear. To test this hypothesis, we investigated the impact of a second 
grouping technique, based on time spent in microenvironments, compared to the demographic 
grouping in exposure assessment. In order to divide the population into cohorts with similar 
behaviour, a clustering algorithm was applied. Clusters are defined as point clouds with mem-
bers having a minimum distance to the cluster centre. A simple method to define these cluster 
centres is the iterative k-means algorithm (MacQueen 1967, Hartigan et al. 1979). For a given 
number k of cluster centres, this algorithm allocates the cluster centres randomly for the initial 
step and assigns each point to the nearest cluster centre using a defined distance measure. In 



the next iterative step, the cluster centres are moved to the new central point of the respective 
cluster and the allocation of the nearest member points follows again. The iteration stops if 
the centres do not change any more. Hierarchical clustering methods, namely agglomerative 
and divisive techniques, were also tested by us but found less effective and traceable. 

When using the k-means algorithm, it is possible that the position of the final clusters could 
depend on the initial cluster allocation. Thus, the algorithm should be repeated several times 
to ensure that not only a local optimum is found. Another problem is that the number of clus-
ters has to be defined a priori. Running the algorithm with different k values and comparing 
the amount of explained variance for each step could help to decide on a meaningful k. Clus-
tering was tested for several countries and detailed results are presented for the MTUS data 
from Germany. 

 
Table 2: Grouping of activities into MEs. 

MTUS 
Activity 
codes 

Variable Label  ME  MTUS 
Activity 
codes 

Variable Label  ME 

AV1  Formal work  AV18  Excursions, trips 
AV3  Second job  AV21  Walks 
AV4  School/classes  AV9  Gardening 

Outdoor 

AV8  Odd jobs 

Work 

AV10  Shopping 

AV5  Travel to/from work  AV11  Child care 
AV12  Domestic travel  AV14  Receive personal 

services 
AV17  Leisure travel 

Travel 

AV19  Playing sport 

AV2  Paid work at home  AV20  Watching sport 
AV6  Cooking/washing up  AV23  Civic organizations 
AV7  Housework  AV38  Entertaining friends 
AV16  Sleep/naps  AV40  Pastimes/hobbies 
AV13  Dressing/toilet  AV41  Unknown activity 
AV30  Listening to radio  AV15  Meals/snacks 
AV31  Watching T.V.  AV22  At church 
AV32  Listening to music, etc.  AV24  Cinema/theatre 
AV33  Study  AV25  Dance/party, etc. 

AV34  Reading books  AV26  Social clubs 
AV35  Reading pa‐

pers/magazines 
AV27  Pubs 

AV36  Relaxing  AV28  Restaurants 

AV39  Knitting/sewing 

Home 

AV29  Visiting friends 
      AV37  Conversation 

Other 

 

Modelling framework & implementation 

The ME infiltration estimates are based on the infiltration factors measured in EXPOLIS and 
classified into the regional representative values according to Hänninen et al. (2009) as shown 



in Table 1. Traffic enrichment factors were derived from literature review (Gulliver and 
Briggs, 2004 and Kaur et al., 2005). 

As the EXPOLIS measurements were performed in homes, the work and other infiltration fac-
tors had to be estimated via comparison with other studies and expert judgement. By a com-
parison with the ISS (Instituto Superiore di Sanità ) and the EXPOLIS study (Hänninen et al., 
2009), Fwork was assumed to be 15 % lower than Fhome. As the other indoor ME contains ac-
tivities with an unspecified location which could be either indoors or outdoors, the infiltration 
factor is chosen between Fhome and 1 which is representative for the outdoor ME. The stan-
dard deviation was transferred to the other Fi. 

For the calculation of the ESF, time use distributions per ME of the respective cohort must be 
combined with the infiltration factors (eq. 3). We applied a Monte Carlo sampling of diaries 
from the time use data and from the infiltration factor distributions. A lognormal distribution 
was assumed for the infiltration factors (Hänninen et al., 2004). For the time use data, a non-
parametric method was used where weekdays and weekend diaries were sampled with the ra-
tio 5:2 for 365 days. The same applied for seasonal sampling with a ratio of 1:1 although we 
did not use seasonal infiltration factors for this analysis. For the ESF results, an analysis of 
variance (ANOVA) was performed to calculate the effectiveness of the chosen groups. All 
analyses and calculations presented here were performed in R 2.8.1. 

RESULTS 

Comparison of time use distributions 

The time use distribution of the clusters and demographic groups based on the German 
MTUS data are shown in Figure 1 and Figure 2. For the number of clusters k, the value of 5 
seemed to reduce the intra-group variability noticeably as can be seen by the size of the boxes 
of the clusters in Figure 1. Compared to the clusters, the demographic groups have wider dis-
tributions for the time spent in each ME. Nevertheless, performing an ANOVA on the group-
ings and time spent per ME was significant for the demographic groups as well as for the 
clusters. For the classification of working/not working individuals, the employment status 
provided by the MTUS dataset was used. It is clear from Figure 2, that this classification is 
not strict, as people with an unemployed status also spent time working. This might be due to 
the fact that the work classification also includes school. Also the distribution of time spent 
working per day is very large which also comes from the fact that part-time and full-time jobs 
are not treated separately and because weekday and weekend days are represented together in 
the plots. 

A comparison of demographic groups and clusters between all MTUS countries showed a sta-
ble time use pattern for clusters. Even the percentage of diaries per cluster is comparable for 
similar clusters between countries.  



 
Figure 1. Boxplot of the time spent per ME for the five clusters. 

 



 
Figure 2: Boxplots of the time spent per ME for the eight demographic groups. 

 



Table 3: Demographic factors for clusters. 

Cluster  % women  % men  Average age 

1  59 %  41 %  43.8 

2  49 %  51 %  37.6 

3  57 %  43 %  33.2 

4  33 %  67 %  38.8 

5  67 %  33 %  44.3 

 

The average age and percentage of women and men per cluster are presented in Table 3. Ex-
cept for cluster 4 and 5, male and female persons are nearly equally distributed within the 
clusters. The age averages show obvious and significant differences within a range of 11 
years. Nevertheless, all ages can be found in all clusters, making clear differentiation difficult. 

Exposure scaling factors 

The estimated ESF distributions per population subgroup for Germany are presented as cumu-
lative probability curves in Figure 3 with averages given in Table 44. ANOVA results are pre-
sented in Table 55. To assess the uncertainty due to the Monte Carlo sampling, a set of 100 
ESF distributions was computed using the same methodology. The comparison of the ESF 
averages for each group in the 100 simulations shows an average standard deviation of 0.002 
and maximal deviation of 0.012 (1.7 %) between single runs. 

 
Figure 3: Cumulative probability plots of the Exposure Scaling Factor distributions for the different 

groups in Germany. 

 

For the ESF averages (see Table 4), the range between the demographic groups is approxi-
mately 0.04 with females older than 64 (F64) having the lowest and non-working males be-
tween 15 and 64 (Mnonwork) having the highest ESF values. Both groups represent less than 
10 % of the population questioned for the MTUS diaries. The largest population groups, 
working males and females between 15 and 64 years have a similar average ESF of nearly 
0.73, which is very close to the population average. Generally, for the population groups less 



than 15 years and working people between 15 and 64 years, the differences between males 
and females are very small.  

 
Table 4: ESF averages according to different groups and clusters for Germany. 

Groups  Diary %  ESF 

F15  5%  0.735 

M15  5 %  0.741 

Fwork  27 %  0.734 

Mwork  30 %  0.733 

Fnonwork  15 %  0.737 

Mnonwork  8 %  0.754 

F64  5 %  0.719 

M64  4 %  0.740 

Cluster 1  24 %  0.761 

Cluster 2  11 %  0.816 

Cluster 3  21 %  0.731 

Cluster 4  24 %  0.713 

Cluster 5  20 %  0.690 

 

As shown in Table 4, the range between the ESF distributions per group is larger for clusters 
than for demographic groups, which is also shown in Figure 3. The range of ESF averages is 
approximately 0.13 with cluster 2, which is the smallest, having the highest value. This means 
that 11 % of the MTUS population have an ESF 11 % higher than the average of the whole 
population. The average ESF of this cluster is even 18 % higher than for the lowest 20 % of 
the population (cluster 5). 

The variability within the ESF distributions is comparable for clusters and demographic 
groups. This means that the lower variability of time use per ME for the clusters is not re-
flected in the ESF results. Compared to the time use distribution, the variability in the infiltra-
tion factors seems to be larger and thus influences the variance in the ESF distributions more 
heavily.  

 
Table 5: ANOVA results for ESF. Results significant at the 0.95 level are marked bold. 

Independent variable  Number of groups  p‐value 

Gender  2  0.12 

Employment status  2  « 0.01 

Age group  3  0.02 

Demographic groups  8  « 0.01 

Cluster   5  « 0.01 



 

The ANOVA result for gender and ESF is not significant. Demographic groups as well as 
clusters are significant predictors for ESFs (Table 5). From the single demographic factors 
(age, gender, employment), employment status is most significant. 

 

 
Figure 4: Cumulative probability plot for the ESF distributions in all MTUS countries. 

 

In Figure 4 the results for the ESF distributions for all available MTUS countries is presented. 
Please note, that for France and Sweden no diaries for individuals younger than 15 years were 
available so the groups M15 and F15 are missing in the ESF estimation. It is clearly visible 
that the southern countries Italy and Spain have the highest values, both with ESF means > 
0.8. The lowest ESF values were calculated for the UK with an average of 0.70. Germany has 
a mean of 0.734 which is near the European average.  

For all of the countries, non-employed males reached one of the highest values. The largest 
difference between demographic subgroup ESFs was found in Italy ranging from 0.77 for F64 
to 0.85 for Mnonwork. The variances of the ESF distributions are similar for most of the 
countries as seen in Figure 4. Only the UK, the variance is considerably larger than for the 
rest of the European countries which is a result of the larger variance in the infiltration factors 
for Northwestern Europe measured in the EXPOLIS study. Compared to the demographic 
grouping results presented in Figure 3, the differences between the countries are larger than 
the differences of population groups within the countries. 

DISCUSSION  

The presented approach provides a European wide set of Exposure factors for outdoor air us-
ing the harmonised European time activity dataset MTUS and a set of infiltration factors de-
rived from EXPOLIS. Including time use data in European scale exposure assessments to 
evaluate impact of policies is certainly an advancement compared to approaches based on 
ambient concentration solely. Nevertheless, the influence of behavioral policies on subgroups 
would probably be rather small as the infiltration factor seems to have a larger impact on the 



ESF than the time use. The infiltration factors are a large source of uncertainties due to the 
geographical extrapolation and adjustments to work and other indoor infiltration factors. 
Comparisons of different studies showed large differences between the infiltration factor re-
sults which have a greater impact on the exposure results than the time use differences be-
tween countries and population subgroups. The strong influence of the infiltration factor vari-
ance on the exposure results is clearly visible when comparing the country estimates. Also, 
the variability of the ESF within the clusters and the demographic groups are similar although 
the time use distributions have lower variability in the clusters which results form the domi-
nating infiltration factor variances. The choice of the different geographically dependent infil-
tration factors explains most of the differences between the national ESF distributions. It is 
likely that the differences between the countries, classified into the same geographical re-
gions, is clearly underestimated by applying the same infiltration factors. 

Within a country, the differences in ESFs were only affected by the time use statistics. Due to 
the model composition, each Exposure Scaling Factor is a composition of individual diaries to 
represent weekday and seasonal variations over a year. Thus, the choice of “diary pool” for 
each ESF is important to preserve variability and extremes of the population. The results 
highlighted the difficulties of determining sensible groups, as demographic grouping showed 
fewer differences between the ESF estimates than the smaller set of clusters. Thus, the ex-
tremes for the ESF in the population are diluted in the demographic group results, showing 
only marginal deviations from the population average.  

Hence, regarding the grouping of the population for the ESFs, demographic groups seem not 
to be the most effective predictors, although they are still significant. It has to be acknowl-
edged here that the ANOVA results have to be treated with care, as significance is easily 
reached with a large number of samples. Clusters on the other hand seem more meaningful in 
terms of depicting differences in exposure and policy changes, but are hard to describe with 
available demographic variables. To complete the exposure analysis, outdoor air quality on a 
grid is combined with the population distribution and the subgroup ESFs on a grid. If we can-
not describe clusters with the population parameters available for these grids, i.e., age, gen-
der, employment, clusters are of virtually no use for the exposure modelling chain. Clearly, 
the finer the granularity of distinction is, the narrower the time distribution and thus the better 
the ESF estimates are. In parallel, the size of the groups gets smaller with increasing distinc-
tion. The balance between a representative group size and a maximal reduction of variance 
led us to choose the current grouping constellation. Further investigations are necessary to 
identify variables that are more homogeneously distributed within the clusters and are thus 
useful for determination of clusters and ESF changes. Also the activity set of the MTUS data 
revealed difficulties in classification for exposure studies, as location information were miss-
ing. Adding the location to the time activity data could help better differentiate exposure and 
more easily evaluate potential policy changes. 

CONCLUSION 

In the presented exposure modelling approach, we combined harmonised time use data and 
infiltration factors to estimate Exposure Scaling Factors for population subgroups and assess 
changes due to policies. Therefore, common demographic grouping techniques were com-
pared with activity –based grouping to assess differences in exposure for susceptible groups. 
As anticipated the time activity-based grouping shows clearer results in the ESF and thus al-
low a better identification of policy changes and extreme exposure impacts. We demonstrated 
that for behavioural and infiltration policies, individual activity data is inevitable to assess the 



impacts. Nevertheless, there is a need for more realistic assumptions regarding behavioral 
policies to enhance the full chain modelling.  

For this time use driven exposure model, variables to describe time activity characteristics in 
terms of exposure relevance need to be identified, as these are inevitable for exposure charac-
terisation. The demographic factors used in this study are not the best choice as their perform-
ance compared to the time use driven approach was rather bad. On the other hand, the activity 
clustering is not necessarily a better alternative as clusters cannot be easily transferred form 
national time use statistics are available to smaller, e.g. urban or rural, regions where the 
population composition can differ. The future work demands identification of better factors 
from time use research that can also be applied for exposure modelling. 

ACKNOWLEDGEMENTS 

This study was realised in the HEIMTSA project funded by the European Union Sixth 
Framework programme contract no. 036913. We thank Dr. Kimberly Fisher for providing us 
access to the Multinational Time Use Study datasets. 

REFERENCES 

Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG and Speizer FE. 
(1993) An association between air pollution and mortality in six US cities. N Engl J Med, 
329 (24):1753-1759  

Gulliver J. and Briggs D.J. (2004). Personal exposure to particulate air pollution in transport 
microenvironments. Atmos Environ,  38(1):1:8. 

Hänninen OO, Lebret E, Ilacqua V, Katsouyanni K, Künzli N, Srám RJ and Jantunen M 
(2004) Infiltration of ambient PM25 and levels of indoor generated non-ETS PM25 in 
residences of four European cities. Atmospheric Environment; 38(37):6411-6423 

Hänninen OO, Hoek G, Mallone S, Chellini E, Katsouyanni K, Kuenzli N, Gariazzo C, Cat-
tani G, Marconi A and Jantunen M (2009) Seasonal Patterns in Ventilation and PM Infil-
tration in European Cities: Comparison of available studies 7th International Conference 
on Air Quality – Science and Application (Air Quality 2009), Istanbul, pp.24-27  

Hartigan JA and Wong MA (1979) A K-means clustering algorithm. Applied Statistics 28: 
100–108  

Hoek G, Kos G, Harrison R, de Hartog J, Meliefste K, ten Brink H, Katsouyanni K, Kara-
katsani A, Lianou M, Kotronarou A, Kavouras I, Pekkanen J, Vallius M, Kulmala, M, 
Puustinen A, Thomas S, Meddings C, Ayres J, van Wijnen J and Hameri K (2008) Indoor-
outdoor relationships of particle number and mass in four European cities. Atmospheric 
Environment; 42(1):156-169 

IPCS Risk Assessment Terminology Part 2: IPCS Glossary of Key Exposure Assessment 
Terminology IPCS Harmonization Project Geneva, World Health Organization  

Kaur S., Nieuwenhuijsen MJ and Colvile RN  (2005).  Pedestrian exposure to air pollution 
along a major road in Central London, UK. Atmos Environ 39(38):7303:7320. 

Klepeis NE (1999) An introduction to the indirect exposure assessment approach: modeling 
human exposure using microenvironmental measurements and the recent National Human 
Activity Pattern Survey. Environ Health Perspect, 102(2):365–374 



Klepeis, NE, Nelson W, Ott W, Robinson J, Tsang A, Switzer P, Behar J, Hern S and Engel-
mann W (2001) The National Human Activity Pattern Survey (NHAPS): a resource for as-
sessing exposure to environmental pollutants. J Exposure Analysis and Environmental 
Epidemiology, 11:231–252 

Koutrakis P, Briggs S and Leaderer B (1992) Source Apportionment of Indoor Aerosols in 
Suffolk and Onondaga Counties, New York. Environ Sci Technol, 26(3):521–527 

Krewitt W; Heck T; Droste-Franke B; Trukenmüller A; Friedrich R (1999) Implementation of 
the EcoSense model in Brazil/Latin America,  IAEA Contractual Service, Final Report, 
Agreement No 98CL9254 

Kuhn A; Loh M; Gerharz L; Torras S; Yang A; Klotz V; Fantke P; Bartonova A;  Friedrich R 
(2009) Individual Exposure Modelling in an Integrated Decision Support System for air 
quality management. 21st conference of the International Society for Environmental Epi-
demiology (ISEE). August 25 – 29, 2009. Dublin, Ireland 

MacQueen, J (1967) Some methods for classification and analysis of multivariate observa-
tions In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and 
Probability. eds L M Le Cam & J Neyman, 1, Berkeley, CA: University of California 
Press, pp 281–297 

McCurdy T and Graham SE (2003) Using human activity data in exposure models: Analysis 
of discriminating factors. J Exposure Anal Environ Epidemiol, 13:294-317 

MTUS (2009) Multinational Time Use Study, Versions World 553, 580 and 60 (released 26 
March 2009) Created by Jonathan Gershuny and Kimberly Fisher, with Evrim Altintas, 
Alyssa Borkosky, Anita Bortnik, Donna Dosman, Cara Fedick, Tyler Frederick, Anne H 
Gauthier, Sally Jones, Jiweon Jun, Aaron Lai, Qianhan Lin, Tingting Lu, Fiona Lui, Leslie 
MacRae, Berenice Monna, José Ignacio Giménez Nadal, Monica Pauls, Cori Pawlak, An-
drew Shipley, Cecilia Tinonin, Nuno Torres, Charlemaigne Victorino, and Oiching Yeung 
Centre for Time Use Research, University of Oxford, United Kingdom  
http://wwwtimeuseorg/mtus/  

Özkaynak H, Palma T, Touma JS, Thurman J (2008) Modeling population exposures to out-
door sources of hazardous air pollutants. J Exp Anal Environ Epidemiol 18:45–58 

Pope CA, Burnett R, Thun M, Calle E, Krewski D, Ito K and Thurston G (2002) Lung Can-
cer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollu-
tion. Journal of the American Medical Association, 287(9):1132–1141 

Zidek J, Shaddick G,White R, Meloche J, Chatfield C (2005) Using a probabilistic model 
(pCNEM) to estimate personal exposure to air pollution. Environmetrics, 16:481–93 


