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FOREWORD

The Eyjafjallajokull eruption in spring 2010 found the European air transportation system
unprepared to deal effectively with such a large-scale event. At that time the European Space
Agency and Eumetsat convened a two-day meeting in Frascati, Italy, with specialists in space-
based observations of volcanic emissions, to consider if best possible use was being made of
observing systems, along with models, to inform management of the situation. The workshop
demonstrated that the research community across Europe had responded extensively to the cri-
sis on a best-effort basis, and their results offered significant promise for more effective future
management of such events. A comprehensive set of recommendations was made for work to
realize this research potential as operational tools that could better inform the response to any
similar future situations. The present report summarizes the outcome of a follow-on workshop
in March 2013, also convened by ESA and EUMETSAT, in Dublin, Ireland. This brought to-
gether representatives of the research community along with aircraft manufacturing industry,
airline operators, regulators and meteorological offices, to review progress and guide on-going
work within the ESA “Volcanic Ash Strategic Initiative Team” project, led by the Norwegian
Institute for Air Research (NILU). This report summarizes the workshop findings on progress
made in the intervening three years on observations and models, as well as on the regulatory
side. It shows that, while a similar event would today be met with a more adaptive and econom-
ically effective response, there remains significant opportunity to optimize the operational use
of satellite, ground and airborne observations during such situations.

Dr Mark Doherty

Head of Earth Observation Programmes Exploitation and Services Division,
European Space Agency, ESRIN, Via Galileo Galilei,

00044 Frascati, Italy,

mark.doherty @esa.int
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G — Executive Summary

The Eyjafjallajokull eruptions of AprilMay 2010 represent a step change in the approach taken
by industry, regulators, data providers and academia to the problem of mitigating the hazardous
effects of volcanic ash on the aviation industry. More than 100 papers have been published
on scientific and phenomenological aspects of the eruption, and dozens of national and interna-
tional projects have been or are being undertaken to address various issues associated with the
problem. Prior to the Eyjafjallajokull eruptions, there had been two international symposia on
Volcanic Ash and Aviation Safety. These took place 1991 [1] and 2003 [2]. In May 2010, the
European Space Agency (ESA) and Eumetsat held a dedicated workshop in Frascati to discuss
lessons learned as a result of the Eyjafjallajokull event and to examine the use of satellite data
to improve aviation safety. A set of recommendations were outlined at the workshop and are
summarised in an ESA report by Zehner et al., [3]. The report also proposed follow-up meet-
ings to review progress on these recommendations. In March 2013 a workshop was held in
Dublin, Ireland which successfully brought together aviation industry stakeholders, regulatory
bodies, EO data providers, end-users and academic researchers. It provided a unique forum to
discuss the considerable progress made on the problem of ash and aviation and demonstrated the
responsiveness of the scientific community in meeting industry needs. Participation included
experts from airlines, civil aviation authorities, volcanic ash advisory centres, end-users (pilots),
data providers (ESA, Eumetsat, NASA) and academic researchers with expertise in atmospheric
science, meteorology, transport modelling, volcanology and aerosol science. The meeting was
co-sponsored by ESA and Eumetsat and included a visit and demonstration at the operations
centre of Aer Lingus at Dublin airport. This report provides a summary of the outcomes of the
Dublin meeting under the following topics:

e Dispersion and transport modelling of volcanic ash
User requirements
Best end-to-end system for volcanic ash forecasting
Evolution of the European aviation response to volcanic cloud hazards
Future response—the role of satellites

Highlights of the Report are provided in the Key Points extracted from each of the following
chapters and includes a summary table highlighting the progress made on the main recommenda-
tions from the Zehner report [3]. A comprehensive bibliography of reports and articles relating
to volcanic ash and aviation completes this report.






2 — Key Points

Transport modelling of volcanic ash (Chapter 3)
e [ntegrated, flexible, data assimilating models are being developed to improve operational
forecasting of volcanic ash
e Satellite data are key ingredients, but the lack of real-time availability of specific volcanic
ash products is a limiting factor
e Improved parametrisations of volcanic processes, especially to constrain the eruption
source parameters (e.g. water entrainment) are needed
e Improved coordination to ensure qualitative agreement among models being used at the
VAACs, other European Met Offices and Research Institutes are needed
User needs (Chapter 4)
e Operators need more frequent forecast information, longer advanced warnings (5—6 hours)
and longer validity times (24-36 hours)
e Users need volcanic ash data products, especially from Geostationary instruments as
quickly as possible and ideally in real-time
o Users would like standardised EO products, with quality assurance and traceability
o Spatial and temporal resolution of EO data are able to meet the current user requirements
Optimal observing system for volcanic ash monitoring in Europe (Chapter 5)
e Current satellite systems provide good global coverage for volcanic ash and SO, obser-
vations
o Improved exploitation of geostationary sensor data in order to provide high temporal
resolution information is a high priority
o Improved satellite-based detection of ‘volcanic ice’ and hydrometeor-rich volcanic clouds
e Timing, spatial resolution, both horizontal and vertical, are prerequisites for an optimal
observing system
o The planned ESA Sentinels will enhance the observing system for volcanic ash, but an
optimal system will need to make use of other EO systems and include ground-based
measurements
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Key Points

Evolution of the European aviation response (Chapter 6)

e Difficulty in implementing zero tolerance to quantitative thresholds

e Need for clarity on standard definition of what constitutes ‘visible’ and ‘discernible’ ash
e [ntroduction of Airline operator safety cases allow operators greater freedom to operate

in ash-affected airspace
Future response—the role of satellites (Chapter 7)

e Satellite data will be increasingly important for ash forecasting
e Satellite data will be increasingly important for monitoring volcanic activity (ash and

SO, clouds and thermal anomalies)

e Provision of new satellite data products from the EO system
o [Improved coordination between satellite agencies for standardised ash products

Progress on recommendations

Here we summarise the progress made on the main recommendations of the Zehner report See
Zehner [3]
Recommendation Progress

R1 Access to all data sources of volcanic plume
observations in Europe should be accelerated, im-
proved and open.

Some progress made with a new database of all
satellite observations, model simulations, validation
data and source parameters being developed within
VAST (Volcanic Ash Strategic Team). A similar
database is being developed by the USGS.

R2 Existing observing capabilities within Europe
should be further consolidated and enhanced by
combining satellite, airborne and ground-based sys-
tems for detecting and characterising volcanic ash
clouds.

Several European projects addressing this. New
lidar systems are being installed at key European
volcanic regions. There is a continued need for
better coordination between satellite data product
providers, ground-based networks and airborne
observation systems.

R3 Actions should be taken to ensure that accurate
and timely data are available from volcano observa-
tories or monitoring stations situated near to volca-
noes.

Progress has been made at critical European vol-
canic regions: two new mobile radar systems and
a lidar have been installed in Iceland. The FP7
FUTUREVOLC project will provide a Supersite
laboratory for Icelandic volcanology.

R4 Concerted developments should be undertaken
to integrate existing advanced retrieval methods into
operational systems.

Eumetsat has established a new operational satellite
ash product. Several institutions and meteorological
agencies are taking advantage of this to ingest data
into their VATD models. Further validation, testing
and improvements are needed.
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Recommendation

Progress

RS5 Techniques for assimilation and inversion of
satellite data in dispersion models should be fur-
ther developed and applied to provide quantified ash
cloud advisory information.

The London and Darwin VAACs have established
research and development programs to address this
topic. Other research organisations are conducting
similar projects.

R6 Relevant satellite observation systems and data
products should be formally validated with observa-
tions from other sources and should, where appropri-
ate, be certified with respect to quantitative require-
ments for volcanic plume monitoring.

Some validation has been done [24], but more
is needed. @ The VAST and SMASH/SCAS-2
projects include work packages on validation and
a new database is being developed. At CGMS-41
(Tsukuba, July 2013) it was agreed that the JMA
would lead an inter-comparison of ash retrieval
algorithms.

R7 Actions should be taken to ensure that planned
future European satellites will provide more efficient
guaranteed support for ash cloud related crises; both
operational systems (MTG, Sentinels) and research
missions.

Several studies/projects are ongoing (e.g. usage of
CALIOP, IASI measurements) preparing optimal
usage of future research and operational satellite
instruments (e.g. EARTHCARE, MTG-IRS) for
volcanic eruption detection and emission monitor-
ing.

R8 Studies should be made of potential new satel-
lites and instruments dedicated to monitoring vol-
canic ash plumes and eruptions.

It has been found that the existing and medium term
planned European space segment and data distri-
bution infrastructure is adequate for the European
Aviation Safety application sector.

RY Intensive basic research should be conducted on
the physical, chemical and radiative properties of
volcanic ash, from crater to aged clouds.

At least two new European projects addressing this,
including FUTUREVOLC and VANAHEIM. The-
oretical work at NASA/GSFC and the University
of Maryland (N. Krotkov, K.Yang and A. Rocha
Lima) has improved retrievals of SO, and absorbing
aerosols using UV satellite measurements, notably
from OMI (See list of references for papers on
this topic), and there is a project to measure the
optical, microphysical and compositional properties
of Eyjafjallajokull ash.

R10 European recommendations and actions should
be coordinated with International Civil Aviation Or-
ganization (ICAQO), as the global presiding aviation
regulatory authority, and with World Meteorological
Organization (WMO), as coordinator of the global
system of VAACs See references [4—7].

Establishment of the VASAG and IVATF have
been very effective in getting research results into
operational use. ICAO and WMO have been very
active and willing to act WMO/ICAO organise ash
workshops approximately every 2 years; see [8§—12]
for information on the first 5 workshops.

R11 A follow-up workshop should be organised to
review progress on these recommendations after one
year.

Several workshops have occurred including the
WMO/IAVCEI sponsored Geneva meeting (Novem-
ber 2011 [13]) and in Washington DC, (November
2012 [14]); the VASAG meetings; the IUGG
Melbourne Workshop (July, 2011) and the Dublin
VAST workshop (March, 2013).
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3 — Transport modelling of volcanic ash

Key points

o Integrated, flexible, inverse modeling and data assimilation tools are being developed
to improve operational forecasting of volcanic ash

o Satellite data are key ingredients, but the lack of real-time availability of specific
volcanic ash products is still a limiting factor

o Improved parametrisations of volcanic processes , especially to constrain the erup-
tion source parameters (e.g. water entrainment) are needed

e Need for improved coordination to ensure qualitative agreement among models being
used at the VAACs, other European Met Offices and Research Institutes

Introduction

The aim of this section is to review the current roles, capabilities and limitations of volcanic
ash transport and dispersion (VATD) models. VATD models are used operationally by Volcanic
Ash Advisory Centres as well as a number of National Meteorological Services (NMS), to pro-
duce forecasts of ash distribution in the atmosphere and on the Earths surface. They are also
used as a research tool to understand the physical processes controlling the transport and disper-
sion of volcanic ash clouds. VATD model capabilities, limitations and future developments are
dependent on their role.

Operations
Current operational role and capabilities

VAACs provide ICAO-approved volcanic ash forecasts for civil aviation during eruptions. These
are volcanic ash advisories (VAA) and volcanic ash graphics (VAG). Currently the pre-approved
hazard maps consist of instantaneous horizontal ash coverage in three vertically integrated lay-
ers of the atmosphere at 6-hourly intervals. The ash boundaries signify the furthest extent of
ash dispersion. The VAAs provide one snapshot of the ash location and then a forecast at +6,
+12 and+18 hours from the time of the VAA. At national level several NMSs provide their own
nationally mandated VA forecasts. The NMS products are typically customised to the needs of
the respective country or region. They provide guidance and advice to the national authorities
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in charge of aviation as well as public health. NMS products are frequently used for aviation
planning together with the VAAC products. Only NMS products are offered for public health as
there are no VAAC products currently available. All operational VATD models produce an esti-
mate of the future distribution of volcanic ash following an eruption and are therefore essential
for planning purposes >6 hours ahead.

Current operational limitations

The accuracy of any VATD model forecast largely depends on the accuracy of the volcanic erup-
tion source parameters (ESPs). These include the height of the volcanic ash plume above the
volcano event, the mass eruption rate, the vertical distribution of ash in the plume and the parti-
cle size distribution. Since the VATD model forecasts are usually produced before observational
data become available, predefined ESPs need to be used. For example, these might include a
uniform vertical distribution of ash from the volcano vent to a predefined height, and a particle
size distribution based on historical data. As soon as observational data become available, these
ESPs are refined and updated forecasts are produced. However, these refinements are subjective,
currently prepared manually and subjectively by the forecasters, and cannot make optimal use
of all the data typically available, especially satellite remote sensing data. Inverse modelling
techniques have recently been developed that combine a priori information about on the source
term (e.g., eruption column height), a large number of sensitivity calculations with a VATD
model and satellite retrievals of total ash (or SO,) column, to produce an optimized optimised
source term. This source term allows the best possible fit of the model, while keeping it within
the uncertainty bounds given by the a priori data. The inverse modelling techniques have been
proven to work in research mode and are now being tested at several operational centres, includ-
ing NMSs and VAACs. Further improvement can be expected from data assimilation methods,
which also allow for correction of model errors with origins other than the source term (e.g.,
errors in the modelled wind fields). Different VATD models can produce quite different model
forecasts and even forecasts from a single VATD model can differ substantially when different
meteorological input data sets are used. Potential differences between the designated VAAC
models and the regional NMS models pose a certain challenge, which needs to be addressed by
coordination. Technically, ensemble forecasting methods should be used to address such differ-
ences and deviations, which reflect the current range of uncertainties rather than deficiencies of
single models.

Future operational capabilities

Potential operational capabilities are currently being investigated by running VATD models
in research mode. New operational capabilities will be available in the future, provided they
do not decrease the speed at which forecasts are produced. These new capabilities require
integrated, flexible approaches enabling predictions to be fine-tuned based on the arrival of new
measurements as the event evolves. As well as the integration of models, another important
future operational aspect is the direct transfer of VATD results, including their uncertainties,
into adequate decision support systems, which could take into account flight routes and air
traffic situation. Sveinbjornsson [15] addressed this topic for the Icelandic air traffic situation.

Research
Current research capabilities

In response to the severe impact of the 2010 Eyjafjallackull eruption, VATD models were run in
research mode and simple parametrisations of near-source plume dynamics and microphysical
processes were developed. These parametrisations allowed quantitative estimates of volcanic
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ash concentrations to be produced (supplementary to the ICAO official products). Following
Eyjafjallajokull new capabilities are being developed. These include:

(1) Improvements to existing simple parametrisations of physical processes. For example,
aggregation, interaction of the plume with the environment, sedimentation rates and wet
deposition.

(2) Integration of observational data and model forecasts to better constrain ESPs. For exam-
ple, inverse modelling and data assimilation techniques.

(3) Quantification of uncertainties associated with VATD model inputs (ESPs, meteorologi-
cal fields) and modelled physical processes.

(4) Ensemble forecasting using different VATD models or the one VATD model run with
different ESP’s or parameter assumptions.

(5) Ensemble forecasting using the Ensemble Prediction Systems (EPS) of major meteoro-
logical centres.

3.3.2 Current research limitations

Currently, the factors limiting our ability to implement these research capabilities into opera-
tionally running VATD models include:

(1) Reliable availability and quality of routine monitoring data (especially from satellites) to
enable automated integration of observations and modelling data in near real-time.

(2) Extensive evaluation of newly developed parametrisation schemes in a wide range of
meteorological situations and eruption types.

(3) The availability and communication of detailed (volcano specific) ESP’s from volcanic
observatories to the VAAC’s to be used as pre- or post-eruption model inputs.

(4) Lack of resources to develop new observational techniques (for example to measure par-
ticle size distribution) or to run computationally expensive ensembles of model simula-
tions.

(5) Lack of resources to run computationally demanding inverse modelling or data assimila-
tion systems close to real time

Much work is still to be done by the scientific community to overcome these challenges and
to provide the end-user communities with a reliable, robust and easily understandable commu-
nication of volcanic ash hazards.
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4 — user requirements review

Key points
e Operators need more frequent forecast information, longer advanced warnings (5—6
hours) and longer validity times (24—-36 hours)
Users need volcanic ash data products, especially from Geostationary instruments as

quickly as possible and ideally in real-time
o Users would like standardised EO products, with quality assurance and traceability
o Spatial and temporal resolution of EO data are able to meet the current user require-
ments

Introduction

The User Workshop attracted 57 participants from a wide range of end-users; including one
engine manufacturer, three airlines and one pilot, as well as three regulatory authorities, ESA,
NASA, EUMETSAT, eight weather service providers, seven research institutes, 2 VAAC rep-
resentatives, ten universities and two corporations. In particular the requirements of key end-
users such as the VAACs, meteorological offices, airlines and aviation regulatory bodies of
satellite-based data products for volcanic ash monitoring and forecasting were discussed. It
is not possible to include all of the requirements and discussions of the varied user groups
in this report, which is limited to the key user requirements and some of the important find-
ings from the VAST User Survey. The results of the VAST User Survey results (published
in December 2012) were presented at the workshop (see VAST http://vast.nilu.no/
media/documents/2013/09/03/nilu-esa-vast-urd-v0.4.pdf User Require-
ment Document for details). This User Survey relied on the SAVAA projects requirements dat-
ing from April, 2009 and focussed especially on the needs of the London and Toulouse VAACs,
as these were key stakeholder users of the SAVAA project. The recommendations from ESA-
EUMETSAT workshop, May, 2010 and other VAAC requirements were also considered. There
were 74 respondents; 29 operational, 45 research 7of the 9 VAAC:s, 3 airlines (KLM, Icelandair,
Qantas airways), regulatory authorities (EASA, Irish Aviation Authority, CAA-ICAO), air traf-
fic services operators, pilots, and practising meteorologists. The importance of detecting and
tracking sulfur dioxide (beside ash) was highlighted during the workshop. Although Sulfur
dioxide does not pose immediate danger to airline operations, it affects the engine lifetime,
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cabin air quality and possibly has some repercussions on health of airline passengers and staff.
The chemical composition of the cloud also appears to be important for engine manufacturers.
SO; is relatively straightforward to detect from space; indeed it appears to be easier to measure
than ash. In many circumstances the transport modelling of SO is also easier than for ash. For
passive degassing volcanoes that emit S02, the gas seldom reaches flight levels and therefore
does not pose a significant hazard to aviation. On the other hand, explosive eruptions tend to
emit SO; to the tropopause (or higher) and transport at these levels is less affected by the more
complex processes that dominate in the lower troposphere (eg wet and dry deposition, cloud
cycling, turbulent mixing). Users of volcanic ash information include:

e Airlines
Air Navigation Services Providers
Regulatory bodies (e.g. VAAC, CAA, IATA, etc.)
Meteorological institutes
Volcano observatories
R&D institutes (academic, engine & air frame)
Governmental
Media outlets
Military
Public health institutes
Private/commercial industry

The VAST User Survey relied on the SAVAA projects requirements dating from April, 2009
and focussed especially on the needs of the London and Toulouse VAACsS, as these were key
stakeholder users of the SAVAA project. The recommendations from ESA-EUMETSAT work-
shop, May, 2010 and other VAAC requirements were also considered. There were 74 respon-
dents; 29 operational, 45 research 7of the 9 VAACs, 3 airlines (KLM, Icelandair, Qantas air-
ways), regulatory authorities (EASA, Irish Aviation Authority, CAA-ICAO), air traffic services
operators, pilots, and practising meteorologists.

Key user requirements

The results of the user survey were presented at the Workshop and discussed. The main ques-
tions included in the survey are shown below:

e Which volcanic hazard products or services do you regularly use (select all that apply)?
What would be the main obstacles to adopting the use of new/additional EO products?
What is your preferred product delivery mechanism?

What is your preferred data format for receiving volcanic satellite products?

What is the minimum (not optimum) spatial resolution required for forecast products?
What is the minimum acceptable vertical resolution of volcanic aviation hazard observa-
tion products?

For both observation and forecast products, what is your preferred coordinate system?
Do you want an error characterisation with the product?

What is the minimum acceptable spatial accuracy of these satellite-based products?
What is the required update frequencies for satellite-based products?

What is the required update frequencies for model forecast products?

In terms of ash cloud forecasting, what is your preferred modelling approach (singe or
ensemble)?

There were also questions concerning the relevance of the VAST project and an invitation for
comment. The complete User Report and Power Point Presentation are available on the VAST
website. For the purposes of this report, only the difference in response from operational users
and research users for two of the questions regarding alerts and standards are highlighted.
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4.2.1 Alert services

ESA has invested considerable effort into making EO data available in a convenient format for
its users. For volcanic SO, and ash these are provided in the form of alerts from the SACS,
SACS2, and VAST projects. The alerts are not formalised nor do they require a compulsory
reaction, however the general feedback has been that these alert services are used and welcome.
Figure 4.1 shows the survey results for both category of users. The majority of operational users
use the official VAAC advisories, as wold be expected, but also make considerable use of the
SACS alerts. The picture for research users is quite similar, with a greater emphasis on research
products and less on VAAC advisories; also as expected.

Figure 4.1: Results of the survey concerning use of current alert services by operational (top)
and research (bottom) user categories.
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Monitoring services

Satellite data play a key role in alerting the community when an eruption cloud is observed.
However, they can also play a role in on-going monitoring of activity on a global scale. In the
European domain, the MSG-2/3 satellites also have an excellent view of volcanoes in Africa
and recent activity in the Rift Zone has been the site of several eruptions affecting aviation.
Beyond the impact on aviation, volcanoes also affect communities and infrastructure in the
vicinity of the active volcano. The EVOSS project has been very successful in utilising space-
based assets, particularly from the geostationary instrument SEVIRI, to provide continuous
monitoring services for communities in Africa vulnerable to volcanic activity. Funding for the
service has officially ended but the webpage is still active (password protected for specific users
only) and there are steps in place to seek further funding to continue the service. In the longterm,
mechanisms to permit a sustainable monitoring service are needed.

Spatial resolutions

The resolution of data required by users is of key interest to satellite instrument providers. The
survey results for the horizontal spatial resolution show a strong dichotomy between operations
and research needs. (Fig. 4.2). Operational users are content with spatial resolutions of <10
km, while research users prefer 1 km resolution data. Fortunately, the current status is that both
of these requirements are met by existing satellite instruments. These conclusions are valid for
both ash and SO, sensing. The survey did not go into detail regarding spectral requirements
and the link between wavelength interval and resolution. Passive microwave data could provide
extremely valuable information in the early stages of volcanic cloud evolution , when it is
opaque, small and rapidly developing. Capturing the developing ash column would require a
passive microwave sensor in geo orbit with spatial resolutions of ~1 km or less.

Forecast frequency

The frequency of updated forecasts and the length of time of their validity is of vital importance
to airline operators. The survey found that operational users wanted forecast updates within15
minutes, but that within 1 hour was also acceptable. 10 respondents indicated that within 6
hours was acceptable as a minimum requirement. Research users showed no clear preference,
probably reflecting the way the forecast data are used by various research groups. Note that
some of the research respondents are suppliers of forecast information.

Standards and traceability

Industry demands standards and traceability when dealing with operational situations, espe-
cially when safety is involved [16—-19]. The increasing use of EO data to inform decisions
requires data products with some measure of their accuracy, the methodology used to derive the
products and an audit trail. Currently there are no standards for ash and SO, satellite data prod-
ucts. As a first step there are strong efforts to provide error characterisation with the data prod-
uct, derived from systematic validation campaigns. Generally the Algorithm Theoretical Basis
Document (ATBD) details the algorithms and lists the caveats and theoretical performance. In
order to establish a system of standards for ash and SO, products, a further step is required to
inter-compare data products from various research groups (and some meteorological agencies.
A new activity has started under the auspices of WMO for an inter-comparison workshop to be
held in mid-2014.
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Figure 4.2: Results of the survey concerning horizontal spatial resolution of satellite products
by operational (top) and research (bottom) user categories.
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Figure 4.3: Results of the survey concerning forecast frequency by operational (top) and re-
search (bottom) user categories.



5.1

5.2

G — Optimal observing system for Europe

Key points

o Current satellite systems provide good global coverage for volcanic ash and SO»
observations

e High priority for improved exploitation of geostationary sensor data providing high
temporal resolution

o There is a need for standardisation of EO volcanic products

o Timing, spatial resolution, both horizontal and vertical, are prerequisites for an opti-
mal observing system

o Improved satellite-based detection of volcanic ice and hydrometeor-rich volcanic
clouds

o The planned ESA Sentinels will enhance the observing system for volcanic ash, but an
optimal system will need to make use of other EO systems and include ground-based
measurements

Introduction

The 2010 Eyjafjallajokull eruption showed that real-time detection and tracking of volcanic
clouds based on satellite, aircraft and ground data plays a key role in the management of aviation
crises. At the time of the eruption satellite data were not assimilated into ash forecasting models
and much comment was made on this by industry; likewise actual observations of ash in the
atmosphere from aircraft and ground-based lidars clearly demonstrated their importance.

Three years on from the eruption and after significant aviation impacts from Eyjafjallajokull
[21], the May 2011 Grimsvotn event, the eruptions of Puyhue-Cordon Caulle and the SO;-rich
eruption of Nabro in Eritrea, satellite data are now seen as a vital part of the ash-observing
system and national meteorological agencies and some research institutes are engaged in de-
veloping satellite data assimilation systems for the purpose of improving ash forecasts. This
progress is discussed here.

Satellites

The main requirements for an optimal volcanic ash satellite monitoring system are high tempo-
ral resolution ( minutes), high spatial resolution (~1-10 km?) and vertical resolution (~100—
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300 m), and a spectral range that permits detection and quantification of ash (mass loadings)
and gas, principally SO;. As volcanic activity tends to be sporadic and highly unpredictable, a
high revisit time is required in order to follow the continuity of the volcanic eruption process.
High spatial resolution allows better characterisation of the volcanic clouds near the vent where
determination of the source term is an essential input for initialising VATDs. The wide spectral
range from UV to TIR is exploited to retrieve the volcanic ash particle from fine (0.05 pm) to
coarse (15 um) and SO,. The latter it is often used as proxy for volcanic ash, and proved to
be important for flight safety because of long term effects on aircraft engines. The high sen-
sitivity is also essential to guarantee the possibility to detect and retrieve also small quantities
of volcanic ash and SO,. Moreover, an optimal satellite system should also be able to deal
with the criticalities still present in the ash and SO, estimations due to the ash type (i.e. the
ash optical properties), problems associated with very thin ash clouds [22], problems associated
with distant-source eruptions [23], and volcanic cloud altitude and thickness uncertainties. In
particular, the latter influences ash concentration estimation.

State of the art

Current satellites provide excellent spatial, temporal and spectral coverage for passive measure-
ments. The Meteosat Second Generation (MSG) platform that carries the SEVIRI [24] is of
particular value for ash detection and quantification over the European region. This instrument
has 12 spectral channels spanning the visible to infrared wavelengths and providing 1 x 1 km?
to 3 x 3 km? resolution data every 15 minutes, continuously. Two channels situated near 11
and 12 um are needed for ash detection; a third or fourth channel, also in the infrared, is use-
ful for constraining the height of the ash cloud, needed for ash quantification. Both polar and
geostationary systems have these capabilities, exploiting other regions of the EM spectrum to
determine parameters such as the aerosol optical depth (AOD) at 05 um (e.g. AATSR), an
aerosol absorbing index (AAI) from ultraviolet measurements (e.g. OMI, GOME-2) and utilis-
ing the near infrared region to distinguish ice and water clouds from ash clouds. A challenging
aspect of using satellite data is to design algorithms that make use of the spectral, temporal
(especially for geo sensors) and spatial information. Thus, the hyper spectral sensors IASI and
AIRS use a kind of ‘fingerprinting’ to identify specific molecules from their spectral signatures
(e.g. for SO,) and the shapes of the absorption curves to ascertain the microphysics of parti-
cles (e.g. size and composition). This kind of information is not available on all sensors, but
by combining temporal and spatial information together with broadband spatial coverage from
polar and geo sensors (e.g. MODIS and SEVIRI) retrievals can be made. For example, repeat
coverage of a particular area using geostationary data can reveal ‘climatological’ behaviour of
broadband channels. Departures from these climatological signatures can be assigned to the
presence of an anomalous aerosol (ash) in the atmosphere. Once ash-affected pixels are iden-
tified a retrieval is undertaken. In many instances the major challenge is to identify the nature
of a pixel (clear, cloud, ash etc.) is the major challenge. Sophisticated cloud detection schemes
have been developed that utilise statistical measures, physical models and temporal variation to
classify pixels. The state of the art on cloud detection is good, but improvements are always
needed. Physical retrieval schemes applied to ash detected pixels suffer from a lack of knowl-
edge of some basic microphysical and optical parameters needed to run the retrieval models. In
particular there is a lack of accurate spectral refractive index information for ash particles. The
size distribution of fine ash (1-63 pm, diameter) is poorly constrained and more measurements
are needed, particularly for ash that is airborne. Lack of information on important source and
sink (fallout through aggregation) processes is also hindering progress. The importance of wa-
ter in volcanic clouds is emphasised here because of the vital nature these processes play in the
development and transport of volcanic clouds. Much more work is required in trying to identify
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ice-coated ash particles, and it is suggested that a class of ice-rich volcanic cloud be recognised
and termed ‘volcanic ice’ cloud. Such clouds are frequently observed in tropical eruptions of
great vertical extent (e.g. 8 km or higher) and are often not identified correctly by traditional
IR methods (e.g. reverse absorption). Passive (and active) microwave data may play a role in
detection improvements.

The situation for active sensors for measuring gases and particles is much less satisfactory.
The passive microwave sensors (e.g. MLS, AMSU-1, AMSU-B, SSMI ) may be able to provide
information on the early evolution of volcanic plumes, especially at the stage of column devel-
opment when the clouds have high numbers of large particles (~ mm size) and/or there is an
abundance of hydrometeors. The Caliop instrument on board the CALIPSO platform (part of
the A-train constellation) is proven to be extremely useful for measuring the vertical structure
of volcanic plumes. Identification of both volcanic aerosol (sulphates) and particles has been
possible because of the dual wavelength polarisation capability of Caliop. When used in combi-
nation with infrared imaging instruments, the full 3D structure can be accessed. Unfortunately,
Caliop has a narrow swath (~90 m) and long repeat time (~16 days) which makes use of the
data for operational purposes problematic. Radar sensors (e.g. CloudSat) have not yet been
fully investigated for use with volcanic eruptions, but there is some potential in the early stages
of column development.

Future systems

The operational use of geostationary (GEO) EO data at the Volcanic Ash Advisory Centres
(VAAC:s) for the current and near-future (next 10 years) is shown in Table 5.2.1 which lists ca-
pabilities at all VAACs The European VAACs (London and Toulouse) are in a relatively good
situation with geo seniors. This will continue and improve with the launch of the MTG (Me-
teosat Third Generation) geo carrying a hyperspectral sensor. The VAACs covering the Amer-
icas and Pacific basin are less well served and will lose the split window capability by 2015.
Some research has been done to assess the impact of this and there is the possibility of using a
longer wavelength channel, but the loss of the split-window capability is regarded as having se-
rious implications for volcanic ash monitoring. The Chinese FY4A will also have hyperspectral
capability covering ash monitoring in the western pacific, Indonesian archipelago, Philippines,
Japan and Kamchatka. Polar orbiters cover the whole globe and wide swath imaging instru-
ments (e.g. MODIS) can provide 2 or more coincidences per day depending on latitude for any
given point on Earths surface. With several polar orbiters carrying split-window capability (or
hyperspectral sensors) the coverage is generally very good. Thus, sensors such as the MODIS-
Terra, MODIS-Aqua, AVHRRs, NPP, AIRS, IASI and the Sentinel-3 instruments (SLSTR and
OLCI), together with similar sensors from the Japanese, Chinese, Russian, Korean and Indian
space agencies will provide excellent global monitoring for volcanic ash for the next 10-20
years. Coupled with the use of the UV polar orbiters (Sentinel-4 will carry a UV geo sensor)
for monitoring SO, (daytime) there will be adequate EO resources available to the research,
commercial and operational communities for the near future (next 10 years).
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Some of the new sensors useful for volcanic ash and SO, monitoring are listed below:

New sensors 1 European region

e FCI (GEO VIS/TIR multispectral, MTG-S). FCI will be capable of providing addi-
tional channels with better spatial, temporal and radiometric resolution, compared to
MSG-SEVIRI instrument.

e IRS (GEO IR hyperspectral, MTG-S). It will deliver over the Full Disk data every 60
minutes, with a spatial resolution of 4 km, increasing the capability of the IASI ash
and SO, retrieval schemes.

e Sentinel 4 (GEO UV/NIR hyperspectral, MTG-S ). It will deliver over the Full disk
data every 60 minutes, with a spatial resolution of better than 10 km, increasing the
capability of the OMI, GOME-2 and SCIAMACHY SO, retrieval schemes.

e NPP

e OLCI and SLSTR (LEO VIS/TIR multispectral, Sentinel 3). Covering VIS to TIR
with high signal to noise ratio and spatial resolution. Increasing the capability of
MODIS, AVHRR, MERIS and AATSR ash and SO, retrieval schemes, and SLSTR
dual view will permit stereo matching retrieval of volcanic plume altitude.

e Backscatter Lidar (ATLID), aboard the EARTHCARE mission, should be use to im-
prove the volcanic ash thickness retrieval needed for a precise estimation of the ash
concentration.

New sensors 2 Global

e Includes all polar orbiters for the European region, e.g. Sentinel-3 and EPS MetOP-
SG/MODIS/AVHRR/NPP (OMPS, VIIRS), TROPOMI (UV/SWIR) on Sentinel 5P,
VNS Sentinel 5, IASI-NG, 3MI and METOP-C sensors: IASI and GOME-2

e MTG-FCI (GEO VIS/TIR multispectral, Sentinel 4). FCI will be capable of providing
additional channels with better spatial, temporal and radiometric resolution, compared
to MSG-SEVIRI instrument.

e MTG-IRS (GEO IR hyperspectral, Sentinel 4). It will deliver over the Full Disk data
every 60 minutes, with a spatial resolution of 4 km, increasing the capability of the
TIASI ash and SO, retrieval schemes.

e MTG-UVN (GEO UV/NIR hyperspectral, Sentinel 4). It will deliver over the Full
Disk data every 60 minutes, with a spatial resolution of better than 10 km, increasing
the capability of the OMI, GOME-2 and SCIAMACHY SO, retrieval schemes.

e OLCI and SLSTR (LEO VIS/TIR multispectral, Sentinel 3). They will cover all the
spectral range from VIS to TIR with high signal to noise ratio and spatial resolution.
They will increase the capability of MODIS, AVHRR, MERIS and AATSR ash and
SO, retrieval schemes, and SLSTR dual view will permit stereo matching retrieval of
volcanic plume altitude.

e Backscatter Lidar (ATLID), aboard the EARTHCARE mission, should be use to im-
prove the volcanic ash thickness retrieval needed for a precise estimation of the ash
concentration.

High resolution (spatial) commercial satellites (e.g. SPOT, Pleiades) have not been ex-
ploited as much as their lower resolution cousins, but this situation could change with the much
greater availability of commercial satellite data and the concomitant cost reduction. With sev-
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eral constellations now flying the opportunity to acquire good high resolution (visible) imagery
of a volcanic event has greatly improved. The data can be used to infer cloud heights (from
shadow) or parallax (stereo-viewing) and it is also possible to do some quantitative aerosol re-
trievals of a similar kind to this done for MODIS; although the poorer spectral coverage (usually
only RGB data are available) is a limitation.

The large amount of similar data from a variety of space agencies and platforms suggest the
need for standardisation of ash and SO, products and agreement on uncertainties, traceability
and product definitions. Such activities have started but it is unlikely that standardised products
will be available within the next 3 years.

Table 5.2.1 An overview of the geostationary satellite capabilities is shown as a function
of Volcanic Ash Advisory Centre (VAAC). The table summarises the temporal and spectral
capabilities (those relevant to volcanic ash remote sensing) of each instrument that covers
each VAAC area of responsibility. In addition, future geostationary satellite capabilities are
summarised. Next generation satellites that include a hyperspectral sounding capability are
shown in orange.
VAAC Geo Temporal Spectral Next generation
satellite(s) refresh capabilities Geo satellite
Anchorage GOES-11 30 min Split-window GOES-R (2015)
Buenos Aires GOES-12 15 mins No split-window GOES-R (2015) and
GOES-13 180 mins No split-window MTG (~2018)
MSG 15 mins Advanced
Darwin MTSAT 60 mins Split-window GOES-R like from
FY2D 60 mins Split-window JMA (2020?) and
FY2E 60 mins Split-window FY4A (2014)
London MSG 5 or 15 mins Advanced MTG (~2018)
Montreal GOES-11 30 mins Split-window GOES-R (2015)
GOES-13 15 or 30 mins No split-window
Tokyo MTSAT 60 mins Split-window GOES-R like from
FY2D 60 mins Split-window JMA (20207?) and
FY2E 60 mins Split-window FY4A (2014)
Toulouse MSG 5 or 15 mins Advanced MTG (~2018)
Washington GOES-11 30 min Split-window GOES-R (2015)
GOES-12 15 mins No split-window GOES-R (2015) and
GOES-13  150r30 mins No split-window MTG (~2018)
MSG 15 mins Advanced
Wellington MTSAT 60 mins Split-window GOES-R like from
GOES-11 180 mins Split-window JMA (2020?) and
GOES-R (2015)

5.2.3 Optimal future system

An ideal instrument and satellite configuration for global ash monitoring requires a constellation
of five geo satellites and at least 4 polar orbiters. Each platform should house a hyper spectral
infrared imaging sensor and UV imager with 1-10 km spatial resolution, 30 mins refresh rate
and adequate signal to noise to resolve temperature changes of 0.2 K at 270 K. In the ultra-violet,
the measurement requirement should be the same or better than that for OMI, which has proved
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useful for both explosive and passively degassing volcanoes. To better constrain the volcanic
cloud thickness and height, essential parameters for a reliable ash concentration estimation,
lidar satellite systems are needed to complement the Caliop measurements. These systems
should provide global coverage on a twice daily basis. Since many of these requirements fit
well with those for other applications, the goal of such a system is not unreasonable, although
still requires a large and on-going funding commitment from space agencies. Given that the
community is moving quickly towards data assimilation, some of the missing information not
measured well by satellite instrument will be provided by numerical models (e.g. cloud top
height, atmospheric structure, winds). The optimal system then consists of constellations of
satellites, numerical data assimilation models, validation systems and standardised products,
some of which can be tailored to the specific needs of the aviation industry.

Ground-based and airborne platforms

The ash products will also be significantly improved by means of ground-based instruments (UV
and TIR cameras, lidar and radar systems) that can be used either for the products validation
or for the source terms estimation. This latter is needed as input to the ash dispersion models
with a significant impact on precision and accuracy of model forecasts, and their reliability as
a decision support to the VAAC during volcanic crisis management. Moreover, improved ash
retrievals can be obtained by combining satellite and ground measurements.

The role of the Observatories is fundamental to give continuous and high quality measure-
ments from standardized instruments and procedures. To improve the exploitation of the valu-
able ground-based datasets routinely collected, a great effort should be addressed to make them
freely accessible to the whole scientific community.

Integration

The satellite systems provide global coverage of Earth observation data, but there is no sin-
gle space-borne platform that can carry all the instruments suitable to ensure a comprehensive
description of a given phenomenon. Each geosynchronous Earth orbit (GEO) platform can en-
sure the Earth hemisphere data collection with a high temporal sampling, while low Earth orbit
(LEO) satellites sensors provide global coverage with higher spatial resolution and sensitivity.
Therefore, the integration of all the different instrument retrievals available is key to obtain-
ing more reliable and effective results. The general idea behind an improved ideal European
volcanic ash and SO, monitoring system is the combination of the rapid temporal sampling of
GEO sensors, the higher spatial resolution and sensitivity of LEO sensors with ground-based
observations.
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“1 Key points =
o Difficulty in implementing zero tolerance to quantitative thresholds
o Need for clarity on standard definition of what constitutes ‘visible’ and ‘discernible’
ash
o [ntroduction of Airline operator safety cases allow operators greater freedom to op-
erate in ash-affected airspace
6.1 Introduction

Prior to the April-May, 2010 Eyjafjallajokull eruptions, Europe had not experienced any signif-
icant aviation disruptions from volcanic ash. The Grimsvotn 2004 eruption had caused some
minor flight disruptions in northern Europe, but this cloud was predominantly composed of SO,
and caused no actual problems. The global community involved in this problem had been meet-
ing regularly (every 3 years) to discuss all aspects of monitoring and forecasting volcanic ash
movement—the 6th meeting of this group was held in Citeko, Indonesia in March, 2013 and the
5th meeting was held in Santiago, Chile in March 2010, just prior to the Eyjafjallajokull erup-
tions. It is generally agreed in hindsight that the closure of European airspace during April and
May 2010 was an overreaction. It can be argued that for safety concerns and because the Lon-
don VAAC relied on a model that did not utilise observations, a highly conservative approach
was necessary and the airspace closures justified. Indeed Prata and Prata (2012) show that satel-
lite observations suggest that the ash cloud over parts of Europe were highly heterogeneous and
although mean concentrations were relatively low (<2 mg m~3), maximum concentrations ex-
ceeded 4 mg m~3 in patches. Models are unlikely to be able to forecast and pin-point in space
and time these small, highly concentrated patches. The general guidance for aircraft operating
in ash affected airspace is that if the ash is visible then it should be avoided [4]. This guidance
is flawed for two reasons: it is unclear what concentration of ash is actually visible (to the hu-
man eye) because of variations in illumination and viewing geometry, and it is unclear what
level of ash concentration is dangerous (causes an unacceptable safety risk). In the congested
European airways, therefore, the approach taken was to designate large areas of the atmosphere
ash-contaminated as the amount of ash erupted was uncertain and hence the amount dispersed
across Europe also uncertain. In the three years since the Eyjafjallajokull event, much has been
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learned and there have been further eruptions to study and practice exercises have been under-
taken. The evolution of the European response is discussed here with an emphasis on how
things have improved and how the next large event will most likely be handled.

Eyjafjallajékull
Before Eyjafjallajokull

During the satellite earth observation era (~1970s onwards) there have been several significant
volcanic eruptions within Europe. Overwhelmingly the volcanic activity has been either in Italy
(notably Etna) or in Iceland. Significant periods of activity, including ash emissions that affected
Catania airport have occurred many times and on several occasions the airport has been closed.
Ash emissions have been reported in satellite imagery in October 1981 (AVHRR, first launched
in 1979) and it is likely that activity in the 1970s (notably 1975, 1977 and 1978) would have
been observed by earth observing satellites. Periods of stronger activity occurred in 1991-1993
and 2002-2003; an international space station photograph of one of the eruptions in October
2002 is shown in Figure 1. It is reported that ash from this plume reached Libya and SO,
satellite retrievals from the AIRS sensor (Prata and Bernardo,) support this conclusion

Figure 6.1: International Space Station at image, showing an ash-rich plume from Mt. Etna, first
blowing SE, and then blowing S towards Africa at higher altitudes on 30 October 2002. Ashfall
was reported in Libya, more than 560 km distance from Etna. Courtesy of Earth Sciences and
Image Analysis, NASA-Johnson Space Center — Image ISS005-E-19016.

During Eyijafjallajokull

A list (not comprehensive) of the important events (regulatory and scientific) is provided below,
showing the evolution of factors affecting the ash/aviation problem in Europe and the response
from the scientific and regulatory communities.
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Figure 6.2: Timeline of some important events during the Eyjafjallajokull volcanic ash crisis in
Europe. March—June, 2010.
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Figure 6.3: Timeline of some important events during the Grimsvotn volcanic ash eruption in
Europe. May—August, 2011.



6.2.3

6.3
6.3.1

6.3.2

6.3 Responses 33

After Eyjafjallajokull-Grimsvotn

At about 19:00 UTC on 22 May 2011, the subglacial volcano Grimsvétn began an eruption.
Despite all of the progress made on improving the forecast of volcanic emissions, errors were
made in estimating the amount of ash transported towards European airspace. The UK national
press noted the change in forecast emissions from one day to the next and confidence in model
forecasts diminished. This led to some European nations developing and using their own guid-
ance, while acknowledging the London VAACs authority on the issuance of VAAs. Once again
it appears that not enough attention was given to satellite observations which clearly showed
a large separation of SO, emissions travelling northwards at high altitude (>10 km) and ash
emissions, of low concentration travelling southwards and then eastwards at altitudes lower
than 5 km. The ash concentrations reaching southern Scandanavia were measured to be less
than 1 mg m—> and agreed well with the satellite observations. The problematic forecasts were
based on a relationship between eruptive column height and mass eruption rate which breaks
down when there are strong winds (bent-over plumes) or weak winds and column collapse, as
appeared to have happened in the case of Grimsvétn. The significant separation of SO, and ash
also contributed to the errors as the models treat all emissions in the same way and make no
distinction between volcanic constituents. Figure 2 shows satellite-based retrievals of SO, and
ash integrated over the period 22-25 May 2011; clearly showing the separation and giving an
indication of the mass loadings.

Responses

UK and Iceland response

The UK has the responsibility for the London VAAC (operated by the Met, Office). The UK
Government activated a SAGE team during the crisis and enlisted the support of academic
experts from Universities (the University of Bristol in particular), from the British Geological
Survey (BGS), the Met. Office and invited experts from Iceland. The Met. Office has been
very active since the eruptions of Eyjafjallajokull and Grimsvotn with involvement in several
large projects, through ICAO and WMO and by strengthening its own resources in modelling
and satellite data analysis. The Met. Office has invested in a new aircraft (MOCCA) for the
purpose of providing airborne platform measurements during another event and also in several
new ground-based lidars.

The Icelandic response has been equally strong. Two new radars have been acquired and
a new mobile lidar placed at Keflavik. Icelandic scientists are heavily involved in many Eu-
ropean initiatives and projects and the Icelandic Met Office (IMO) conducts regular volcano
exercises (VOLCEX). The London VAAC and IMO have regular conference calls and the
communication links are now very robust and active. These developments are very encour-
aging and positive, but the airline industry still feels a certain amount of disconnect with what
they perceive as largely academic activities with little relevance to the industry needs. In a
critical submission to the UK government (http://www.publications.parliament.
uk/pa/cm201011/cmselect/cmsctech/498/498we21 .htm) British Airways high-
lighted the over reliance on modelling that they believed informed the decision to close airspace.

The rest of Europe

Although the London and Toulouse VAACS retain the primary responsibility for advising avi-
ation of the potential hazards from airborne volcanic ash, it has become clear that several Eu-
ropean national meteorological services have developed their own capabilities and advisory
networks. Airspace closure is the responsibility of the national authority and it is thus natural
that European governments might wish to enhance their capabilities. The largest investments
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Figure 6.4: Ash and SO, column loadings for the period 22-25 May, 2011 derived from AIRS
(S0,) and SEVIRI (ash). After, Prata et al. (2014).

have been in developing VATD models and in some cases in infrastructure; for example, the
lidar networks have been improved in France and Germany. The Norwegian response has been
to instigate a national project to develop capabilities in modelling and to consider expansion
of the ceilometer network. The Italian response has been more considered, partly because of
funding limitations but also because Italy already has a very strong capacity in volcanological
research and observations. Many European countries have invested national funds towards re-
search projects aimed at improving knowledge of volcanic ash and the European Union has
invested in various new projects, including WEZARD (see project list) which has a component
on volcanic ash. More resources from the EU are expected in the 2020 funding scheme with
funding priorities to be announced in late 2013.

The rest of the world

The effect of volcanic ash on the aviation industry is a global problem [25]. The major impact
of the Eyjafjallajokull eruption was felt in Europe. Similar sized eruptions have occurred in
other parts of the world without a similar paralysis of the aviation industry. There has been
speculation that this was because of the infrequency of ash events over Europe coupled with
the highly congested skies. The existence of many different aviation authorities with national
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sovereingty over their skies also makes for a highly complex and difficult management problem.
While the rest of the world took note, very little has changed in the operational environment for
volcanic ash advisories in the rest of the world. The idea of using concentrations has not been
adopted and has in fact been replaced with various ideas of visible and discernible ash. Neither
of these descriptive terms have good definitions and it is likely that there will be confusion
in the future. The USA have sufficiently advanced systems and significant resources that it
is likely they would cope with an event over the US similar to Eyjafjallajokull — indeed the
1992 Mt Spurr eruption that brought ash and SO, over the whole of the northern USA may
be considered as similar. Other parts of the world may not fare so well. Of greatest concern
is SE Asia, where there are many active volcanoes (Philippines, Indonesia, PNG, and Japan)
and where air traffic is growing fastest. Transfer of knowledge, experience and systems to less
developed parts of the world will go some way to help mitigate the effects of dispersing volcanic
ash on global air transport.

Safety cases

In the rest of the world airspace closures due to volcanic ash are quite rare. Often decisions
are taken by the operators rather than by the regulators and the system appears to be working
as there have been no known fatalities or loss of aircraft due to volcanic ash. To facilitate
this within European airspace it was decided that operators could submit Safety Cases to their
relevant aviation authority which would allow them to fly in conditions where forecast ash con-
centrations were below 2 mg m”>. Safety cases must include information sources and pathways
that help the operator decide whether or not they can fly safely through a forecast area of ash
contaminated airspace. Third party data (i.e. not source form a VAAC) may be used. The case
must also outline inspection and maintenance procedures to be followed and a risk analysis. To
date it is known that at least 5 European carriers have approved safety cases. This is a significant
change to the situation that existed prior to April 2010 and the industry appears to be strongly
supportive of the procedure.

IVATF and VASAG

The 1st international volcanic ash and aviation meeting was held in Darwin, Australia in 2003
and there have since been five further meetings, the last (the 6th) was held in Citeko, Bogor,
Indonesia in March 2013. This group was established to bring together meteorologists, atmo-
spheric scientists, volcanologists and aviation stakeholders together on a regular base (~3 years)
to discuss the issues and advances in volcanic ash and aviation safety. The meetings are spon-
sored by ICAO and more recently by WMO. At the 5th meeting held in Santiago, Chile, in
March 2010 [12] it was proposed that a new group be established the Volcanic Ash Scientific
Advisory Group (VASAG) to report directly to WMO. Following the April 2010 event, the
International Volcanic Ash Task Force (IVATF) was established under the auspices of ICAQO,
and the VASAG was requested to provide scientific information to the IVATF as one of four
subgroups. The IVATF whose membership includes national representatives and organisational
members (ESA is a member) was expected to complete its work by July 2012 and any remain-
ing tasks assigned to the International Airways Volcano Watch Operations Group IAVWOPSG).
The VASAG has held three meetings and will convene again in November 2013 in Geneva. The
achievements of IVATF have been summarised in a report [6] and were presented at the recent
IAVCEI meeting in Kagoshima, Japan.

Perhaps the most important development arising from the deliberations of the IVATF is the
recognition of the need for clarity on the term visible ash. This term is used by ICAO in advice
to aviation for avoidance of areas of airspace contaminated with ash [4]. To circumvent the need
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to specify ash concentrations and provide ash tolerances for engines, aviation is able to fly as
long as ash is not visible. There are obvious problems with this definition, not least what to do
at night? Disregarding the scientific advice of the VASAG to drop this terminology altogether,
the IVATF adopted a compromise approach by providing a new term and clarifying definitions
for both. The 4th (and final) report of the IVATF [6] states:

The task force agreed to take the following initial definitions forward to the IAVWOPSG:

a) Visible ash—volcanic ash that can be observed by the human eye; and

b) Discernible ash—volcanic ash that can be detected by defined impacts on the aircraft or de-
fined in-situ and/or using remote-sensing techniques.

These definitions are too imprecise. The human eye is an uncalibrated measuring device that
includes a highly subjective interpretation method. Exactly what is meant by defined impacts is
unclear and the comments later just confuse matters further by noting that discernible ash may
include crew-sensed ash (how would they know?) The report does provide a recommendation
based on scientific studies that asserts:

“...the current best estimate of the minimum satellite detection threshold for ash mass loading is
0.2 g m=2, with a standard error of +0.15 g m—? under favourable conditions using the most
advanced retrieval methodologies ...”

Whether these new definitions and recommendations will be adopted and be useful is yet to
be determined. Perhaps, the next large volcanic cloud reaching continental Europe will provide
the answer.
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Key points
o Satellite data will be an important input for ash forecasting
o Satellite data will be an important input for monitoring volcanic activity (ash and
SO, clouds and thermal anomalies)
e New satellite data products from the EO system are emerging
o Coordination between satellite agencies for standardised ash products is occurring

Much has changed since the events of April 2010, especially in competency and capacity
to respond to dispersing volcanic ash. Progress in VATD models has been particularly marked
(see Chapter 3) and several European institutes and agencies now have in-house capability to
run volcanic ash forecasts. Progress on observational systems has also been good, with at least
4 European countries investing in new ground-based lidar systems aimed at measuring volcanic
ash concentrations. Developments in radar technology for near-source plume height monitoring,
novel radiosonde equipment and unmanned aerial systems (UAV) are also being made.

Satellite data, and in particular satellite ash products, have seen much less investment and
this is surprising given the lessons learned concerning the use of models unconstrained by ob-
servations. Teams at some institutes (e.g. ZAMG) and at the Met Office and NASA are now
developing systems that can assimilate satellite data into VATD models, and to some degree
reconstruct the ESP. Still there remain many questions about the validity of satellite retrievals,
the error characteristics, the timeliness and paucity of validation data with which to corroborate
and validate the satellite estimates. The lack of frequent space-borne lidar measurements is a
serious gap in the satellite observing network. There may now be a false sense of security with
regard to ash forecasting as there is still too much reliance on VATD and the hit-and-miss ap-
proach of using ground-based lidars, which depend on the ash cloud passing over the lidar at a
convenient time of day (there are no automated ash-detecting lidar systems in 24/7 operation).
The experience of just one or two (including Grimsvétn) eruption events is not sufficient to vali-
date the robustness of VATD models. The ash concentration forecast failures for Grimsvotn and
the overreaction of VAACs in other jurisdictions (e.g. the Toulouse VAAC for the June 2011
Nabro event, and the Darwin and Wellington VAACs for the June 2011 PCC events) suggest
that, while identification of ash and SO; by satellite sensors is improving, the interpretation, use
and timeliness in an operational environment still poses problems.

There are some ad hoc approaches to improving the situation with regard to the availability of
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satellite-based volcanic products, including:

o the ESA-sponsored sites at SACS http://sacs.aeronomie.be,[ASlalerts http:
//cpm-wsd.ulb.ac.be/Alerts/index.phpand VASThttp://fred.nilu.
no/sat/,

o NASAGs near real-time AIRS products http://disc.sci.gsfc.nasa.gov/nrt/
data-holdings/airs—-nrt-products/airs—-nrt-products#Data,
and OMI products http://so2.gsfc.nasa.gov/)

e NOAAs OMlIinformation service http://satepsanone.nesdis.noaa.gov/pub/
OMI/OMISO2/index.html and,

e FMIs fast delivery OMI SO, volcanic products http: //omivifd. fmi.fi/volcanic.
html.

Ash is the main hazard to safe operation of aircraft in flight, but SO, which often accompanies
ash (but not always) is much easier to identify and quantify in satellite data. Some discussions
have been held with regard to the health impacts of volcanic SO, on passengers and on aircraft
parts. There is no consensus on the impact that SO, presents to aviation and the Volcanic Ash
Manual [4] provides only precautionary advice. Here we see that the satellite products are in
advance of the models and the regulatory regime. Current models do not distinguish volcanic
SO, from volcanic ash and most (not all) VATDs treat volcanic emissions as passive tracers.

Important volcanic processes are still not being included in the operational dispersion mod-
els and also in many research-mode models. Some of these processes are complex and difficult
to parametrize, for example, ash aggregation and only limited progress has been made. Alarm-
ingly, perhaps the most important aspect of developing and dispersing volcanic clouds, the
entrainment of water, has hardly been considered by models. There are at least two important
aspects for volcanic clouds that contain large amounts of water. First, it is likely that the ash
fragmentation process results in more fine ash (e.g in phreatomagmatic events) and secondly,
the presence of hydrometeors in the cloud promotes aggregation (and hence removal of ash)
and can often result in large amounts of ice particle formation on ash nuclei. The May 2011
Grimsvétn eruption is known to have had large amounts of water, both glacial and from atmo-
spheric entrainment, resulting in hydrometeor-rich columns which collapsed, removing large
amounts of fine ash that subsequently did not suffer transport. Ice in volcanic clouds masks
ash from detection by IR methods. The large ice-rich cloud observed during the 1996 Rabaul
eruption prevented detection of the ash within and below the cloud. Likewise, the 19 May 1985
Soputan eruption that caused an aircraft encounter could not be detected by the IR methods
other than through an ice-particle signature.

Little use has been made of the high resolution (mostly commercial) LEO sensors, such as
Quickbird, Pleiades, and SPOT. These sensors have a role and when used in conjunction with
more operational assets (e.g. IASI, AIRS, MODIS and OMI), could provide much needed infor-
mation on height (using stereoscopy or shadows), location (some sensors have better than 5 m
pixels), and AOD. Passive microwave data (e.g. from AMSU-A/B) may also be useful during
the optically dense phase of eruption cloud development. Passive microwave energy can pene-
trate deep into optically thick clouds and the brightness temperatures can reveal information on
cloud undercooling and ultimately assist in estimating cloud top height. The Suomi National
Polar-orbiting partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) will also
play an increasing role in quantitative ash remote sensing together with the SLSTR on Sentinel-
3, TropOMI on board Sentinel-5 precursor and the eagerly awaited Sentinel-4 mission which
will include an infrared sounder and UV instrument in geostationary orbit.
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Project acronym

Description/Website

AphORISM
EPOS

EVOSS
EXUPERY
FUTUREVOLC
IVATF

MACC

MEMOVOLC
NOVAC

SAVAA
SACS-2
SMASH
VANAHEIM

VAST
VOGRIPA

WEZARD

Advanced PRocedures for volcanlc and Seismic Monitoring.
European Plate Observing System. [www .epos—eu.org]

European Volcano Observatory Space Services. [www . evoss.eu]
Managing volcanic unrest. [www . exupery-virs.de]

FP7 Icelandic volcano super site. [futurevolc.hi.is]
International Volcanic Ash Task Force.
[www.icao.int/saefty/meteorology/ivatf/]

Monitoring Atmospheric Composition and Climate.
[http://www.gmes—atmosphere.eu/]

ESF funded networking. [www.esf.org/index.php?id=9263]
Network for observation of Volcanic and Atmospheric Change.
[www.novac—project.eu]

Support to Aviation for Volcanic Ash Avoidance. [savaa.nilu.no]
Support to Aviation Control Service. [sacs.aeronomie.be]

Study on volcanic ash monitoring and prediction.
[http://www.cgspace.it/download/SMASH_WEB_PAGE.pdf]
NERC/UK Atmospheric/earth science consortium.
[www.ncas.ac.uk/index.php/en/vanaheim-introduction]
Volcanic Ash Strategic Team. [vast .nilu.no]

Volcano Global Risk Identification and Analysis Project.
[www.bgs.ac.uk/vogripa/]

Weather Hazards for Aeronautics. [www.wezard.eu]
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AATSR
AIRS
AOD
ASTER
ATZ
AVHRR
BTD
CAA
CAeM
Caliop
CALIPSO
CTR
DGAC
DOAS
ESA
ESP
EPS
EUR/NAT
FAA
GEO
GOES
GOME
IACVEI

IATA
TIASI
JIAVW

TIAVWOPSG

ICAO
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............ Advanced Along-Track Scanning Radiometer

............ Atmospheric Infrared Sounder

............ Aerosol Optical Depth

............ Advanced Space-borne Thermal Emission And Reflection Radiometer
............ Air Traffic Zone (air traffic management)

............ Advanced Very High Resolution Radiometer

............ Brightness Temperature Difference

............ Civil Aviation Authority

............ Commission for Aeronautical Meteorology (WMO)
............ Cloud-Aerosol Lidar with Orthogonal Polarization
............ Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations
............ Control Area (air traffic management)

............ Direccion General de Aeronautica Civil de Chile
............ Differential Optical Absorption Spectrometer

............ European Space Agency

............ Eruption Source Parameter

............ Ensemble Prediction Scheme

............ Europe/North Africa Region (ICAO)

............ US Federal Aviation Authority

............ Geostationary Earth Orbit

............ Geostationary Operational Environmental Satellite
............ Global Ozone Monitoring Experiment

............ International Association of Volcanology

............ and Chemistry of the Earth’s Interior

............ International Airline Transport Association

............ Infrared Atmospheric Sounding Interferometer
............ International Airways Volcano Watch system (ICAO)
............ International Airways Volcano Watch Operations Group (ICAO)
............ International Civil Aviation Organisation

............ Institute of Geological and Nuclear Science (New Zealand)
............ Infrasound Measuring System
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INGV National Institute Of Geophysics And Volcanology (Italy)
IvcG - ... International Union of Geophysics and Geodesy
LEO ... Low Earth Orbit
MERIS ... Medium Resolution Imaging Spectrometer
MISR Ll Multi-Angle Imaging Spectroradiometer
MODIS ............ MODerate resolution Imaging Spectroradiomer
MSG Meteosat Second Generation
MTG .l Meteosat Third Generation
MWO Meteorological Watch Office
NAME ...l Numerical Atmospheric-Dispersion Modelling Environment
NEXRAD  ............ US Weather Radar network
NEXTGEN  ............ US air traffic management system (in development)
NMHS ... National Meteorological And Hydrological Services
NOAA .l National Oceanic and Atmospheric Administration
ocr L Ocean Colour Light Imager
oMr ..l Ozone Monitoring Instrument
OoOMPS ...l Ozone Mapping Profiler Suite
SCIAMACHY ............ SCanning Imaging Absorption spectroMeter

............ for Atmospheric CHartographY
SEVIRT ............ Spin-stabilised Enhanced Visible and Infrared Imager
SLSTR ... Sea and Land Surface Temperature Radiometer
SIGMET  ............ Notice of Significant Meteorological Phenomena (ICAO)
SMS L Safety Management Systems (ICAO)
TIR Thermal Infrared
v Ultra-violet
USGS .l United States Geological Service
VAAC . Volcanic Ash Advisory Centre
VASAG ...l Volcanic Ash Science Advisory Group
VATD ... Volcanic Ash Transport And Dispersion Model
VEI Volcanic Explosivity Index
VONA ... Volcano Observatory Notice For Aviation
WMO World Meteorological Organisation
wovo .l World Organisation Of Volcano Observatories
WRF .l Weather Research And Forecasting
WWLLN ... Worldwide Lightning Network
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