

Seasonality of the Characteristic Travel Distance

Knut Breivik¹, Frank Wania², Gillian L. Daly²

¹NILU - Norwegian Institute for Air Research, P.O. Box 100, N-2027 Kjeller, Norway ~ www.nilu.no ²Department of Physical and Environmental Sciences, University of Toronto at Scarborough, 1265 Military Trail, Scarborough, Ontario, Canada M1C 1A4

Abstract

The seasonality of the Characteristic Travel Distance (L₄) for various chemicals has been studied, using a non-steady state multimedia fate and transport model resembling the environmental conditions of the Baltic Sea drainage basin.

direct emission degradation loss advection with air and water

Figure 1. Projection of the Baltic Sea drainage basin (upper part) and environmental compartments and bulk processes considered in the model predictions (lower part). Advective inflow of chemical into the model domain is assumed to be zero in these model simulations.

Introduction

Multimedia fate and transport models are useful tools to describe the concerted action of organic chemical behavior in the atmosphere as well as interaction processes of the chemical between the atmosphere and underlying terrestrial and aquatic surface compartments. This makes them suitable for use in the assessment of the potential for makes them suitable for use in the assessment of the potential for long-range atmospheric transport (LRTP) (*I*-3). Most existing model-based approaches to LRTP assessment assume environmental conditions to be constant in time, even though many factors impact-ing on the atmospheric residence time of organic chemicals (e.g. temperature, precipitation, OH radical concentrations) are known to vary considerably over a variety of time scales (e.g. diurnal, concentrations) are known. seasonal, interannual).

- The key objectives of this ongoing study have been: 1) to evaluate the seasonality of the Characteristic Travel Distance
- to assess the controlling processes affecting $L_{\rm A}$ to evaluate the impact of intermittent precipitation on $L_{\rm A}$
- 2) 3)

Materials and methods

A useful and relatively simple measure of chemical mobility in the environment is the Characteristic Travel Distance (L_{A}) , which is defined as the distance over which the initial concentration of a chemical is reduced to 1/e (~37%) in a plug-flow system (1-3). In this study, $L_{\rm A}$ after ten years of steady emissions was calculated as:

$L_{_{\mathrm{A}}} = u \cdot \mathrm{M}_{_{\mathrm{A}}} / [\mathrm{N}_{_{\mathrm{RA}}} + \Sigma(\mathrm{N}_{_{\mathrm{ASnet}}})]$

where *u* is the wind speed (m h⁺), M_A is the amount of chemical in the atmosphere (mol), N_{bA} is the rate of atmospheric reaction (mol h⁺) and Σ (N_{Abue}) is the net atmospheric deposition to various environmental surface compartments in contact with the atmosphere environmental surface compartments in contact with the atmosphere (moh h^{*}). The equation highlights that it is the relative importance of the competing processes of atmospheric reaction and net deposi-tion that controls L_A at any point of time. Because some chemicals of interest have a significant potential for reversible atmospheric deposition, situations of net volatilization may occur [N_{Abler} < 0]. Under such circumstances, we propose that the expression for L_A should be reduced to $L_a = u \cdot M_A / N_{basi}$. We used the CoZMO-POPI model (Fig. 1), which was originally developed with the sin to describe the long-term fore of

We used the CoZMo-POP1 model (Fig. 1), which was originally developed with the aim to describe the long-term fate of persistent organic pollutants (POPs) in a coastal area (4). CoZMo-POP1 is a non-spatially resolved dynamic non-equilibrium model with 8 well-mixed compartments, representing the atmosphere (A), the terrestrial environment (forest canopy, forest soil, agricultural soil) as well as the aquatic environment (fresh water, sea water), each with a sediment competitionate below. Chemical fate processors each with a sediment compartment below. Chemical fate processes each with a sediment compartment below. Chemical tate processes in CoZMo-POPI include: equilibrium phase partitioning between sub-compartments, advective and diffusive transport between compartments, first order degradation in each compartment (second order in atmosphere between vapor phase chemical and OH radical), and sediment burial. CoZMo-POPI has recently been modified to approximate the second second second second second second second approximate the second sec

and sediment bural. CoZMO-POPI has recently been modified to take into account snow scavenging, a seasonal snow pack (N) and a dynamic water balance (5) (Fig. 2). For this particular work, this modified model was parameterized for the Baltic Sea drainage basin as a whole in order to evaluate L_o for a spatially explicit area. The impact of seasonally changing temperatures on partition-ing and degradation is accounted for through the use of activation energies (reaction) and internal energies of phase transfer (parti-tioning) in the model. Different seasonal trends in temperatures are individually described for the atmoschere the terrestrial environment individually described for the atmosphere, the terrestrial environment and the marine environment. CoZMo-POP1 also considers seasonal and the marine environment. CoZMo-POPI also consider seasonal trends in wind speed over the surface, which are used to calculate mass transfer coefficients for air-water exchange. For a complete description of CoZMo-POPI we refer to Wania (at al. (4) and Daly and Wania (3). The seasonal fluctuation in atmospheric hydroxyl radical concentrations (C_{oul}) over the model domain was derived, based on the seasonal fluctuation in atmospheric hydroxyl radical information originally presented by Rodriguez et al (6). A long-term averaged atmospheric advection rate for the Baltic region as a whole of 42 hours was derived from an atmospheric transport model (7), of 42 hours was derived from an atmospheric transport model (7), and the wind speed, *u*, used to estimate L_A was calculated assuming a cylindrically shaped region (Fig. 1). We should note that certain persistent and volatile chemicals may exhibit a significant propensity for re-volatilization. Therefore, L_a was only calculated after ten years of prolonged continuous emissions to avoid the unrealistic assump-

or protoged commodus emissions to avoid the unrealistic assump-tion of a "clean" environment with zero fugacities. The simulations were carried out for a test set of 14 differ-ent chemical compounds, including five polychlorinated biphenyls (PCBs), one polybrominated diphenyl ether (PBDE-47), five polyaromatic hydrocarbons (PAHs), two hexchlorocyclohexanes (*a*- and y-HCH) as well as Atrazine. Common to the physical-chemi-ent context of the order of the trade of the order of the provider of the provide cal properties selected in this study, is that the original references report thermodynamically consistent properties for the compounds considered

Results and Discussion Seasonal variation and process controlling L

The default model scenario assumes a typical constant drizzle or flurries throughout the year (1.56 mm day-1), adding up to the measured long-term annual average precipitation rate of 570 mm year1. The overall results are shown in Figure 3A.

- Maximum annual average L_A is estimated for PCB-101 (1.6*10⁷m) while minimum annual average L_{A} is estimated for anthracene (1.1*105).
- $L_{\rm A}$ is mainly limited by atmospheric reaction for the lighter PAHs (anthracene, phenanthrene, pyrene), and the seasonal variability of LA mirrors the seasonal variability of OH-radical concentrations for such compounds.
- L_{1} is mainly controlled by net atmospheric deposition for PCB-153, PCB-180, PBDE-47, atrazine, HCHs) throughout the year and not atmospheric reaction.
 - For other chemicals, the relative importance of atmospheric reaction and net atmospheric deposition is dependent on the time of year.
- Chemicals that are significantly sorbed to atmospheric particles at lower temperatures (benzo[a]pyrene, PBDE-47) may be strongly affected by snow scavenging during winter, causing
- a notable reduction in L_A . More polar and water soluble-chemicals, such as atrazine, may experience enhanced L_A during winter, because rain may be a more efficient scavenger than snow for such substances.

Figure 2. The revised CoZMo-POP model used herein includes a seasonally dependent description of contaminant transfer processes (from 5); snow accumulation season (T<0 °C), snowmelt season (T>0 °C) and summer season (T>0 °C after snow has disappeared).

Acknowledgements Financial support from the Long-Range Research Initiative of the European Chemical Industry Association (CEFIC) as well as the Norwegian Research Council (NewPoll initiative) is highly appreciated.

References

- Bennett, D.H.; McKone, T.E.; Matthies, M.; Kastenberg, W.E. Environ Sci. Technol. 1998, 32, 4023-4030.
- (2) Beyer, A.; Mackay, D.; Matthies, M.; Wania, F.; Webster, E. Environ. Sci. Technol. 2000, 34, 699-703.
- Sci. Technol. 2000, 34, 699-703.
 Scheringer, M. Persistence and Spatial Range of Environmental Chemicals; Wiley-VCH: Wenheim, Germany, 2002.
 Wania, F.; Persson, J.; Di Guardo, A.; McLachlan, M.S. CoZMo-POP. A fugacity-based multi-compartmental mass balance model of the fate of persistent organic pollutants in the

coastal zone. WECC Report 1/2000; Toronto, Canada; 26pp

- Daly, G.L.; Wania, F.; Simulating the Influence of Snow on the Fate of Organic Compounds, Environ. Sci. Technol. 2004, 38, in press.
 Rodriguez, J.M.; Ko, M.K.W.; Sze, N.D.; Heisey, C.W. Impact of biomass burning on tropospheric CO and OH: A two-dimensional study. In Global Biomass Burning: Atmospheric, Climatic and Biological Implication; Levine, J.S., Ed.; MIT Press: Cambridge MA, 1991; pp 351-359.
 Jesper Christensen, National Environmental Research Institute, Roskilde, Denmark.
 Hertwich, E.G. Emiron. Sci. Technol. 2001, 35, 936-940.
 Muir, D.C.G.; Teixeira, C.; Wania, F. Emiron. Tox. Chem. 2004 In press.

ing snowpack during spring, causing a peak in $L_{\rm A}$ (lighter PCBs, α-HCH). Enhanced deposition velocities to the forest com-

Certain chemicals may volatilize from the melt-

partment reduce $L_{\rm A}$ for heavier PCBs and PBDE-47 during summer.

Intermittent precipitation

In the model calculations above, a constant drizzle is assumed which is a typical assumption within most multimedia fate models that has been questioned (8). It has also more recently been pointed out that when evaluating the atmospheric long-range transport potential of fairly water-soluble substances (i.e. some currently used pesticides), it is imperative to account for periods of no precipitation (9). The effect of intermittent precipitation on L_{A} is therefore explored in more detail in the following, using daily observations from a meteorological station in the model region which were scaled to yield an annual average precipitation rate identical to the default scenario. The overall results are shown in Figure 3B.

- The annual average $L_{\rm A}$ is either virtually identical or increases when comparing the intermittent precipitation scenario with the default scenario.
- An increase in annual average L_A is suggested for water-soluble chemicals (Atrazine 410%, γ -HCH 118%) as dry atmospheric conditions may cause
- periods of elevated $L_{\rm A}$. Chemicals that are significantly associated with atmospheric particles may also be more effectively transported when intermittent precipitation is taken into account (PBDE-47 187%, benzo[a]pyrene 169%, PCB-180 136%).
- Insignificant changes in annual average L, are observed for the more volatile chemicals that are controlled by atmospheric reaction (anthracene, phenanthrene).

Conclusions

Temporally variable environmental conditions may significantly affect estimates of L_{λ} for certain chemicals. In particular, dry atmospheric conditions may cause episodes of elevated L_A , which may not be recognized under the typical assumption of steady-state environmental conditions. Further work may include additional chemicals as well as further studies on the impact of temporal variability of other environmental variables (e.g. wind speed, temperature, snow cover).