Modeling of Short Chain Chlorinated Paraffins in the Nordic Environment

Ingjerd Sunde Krogseth^{1,2}, Knut Breivik^{2,3}, Martin Schlabach², Frank Wania⁴, Jon Arnot⁴

1: University of Life Sciences, NO-1432 Ås, Norway, 2: Norwegian Institute for Air Research, P.O. Box 100, NO-2027 Kjeller, Norway, 3: University of Oslo, Department of Chemistry, P.O. Box 1033, NO-0315 Oslo, Norway, 4: Department of Physical and Environmental Sciences, University of Toronto, Scarborough, Canada

Introduction

- The understanding of the environmental behaviour of short chain chlorinated paraffins (SCCPs, C,H_{2v+2},Cl_v) remains fragmented.
- SCCPs are often treated as "one" compound, but consist of 46 formula groups (CxCly, 10≤x≤13, 1≤y≤x) and thousands of isomers, which raises the question of their relative risk.
- The main purpose of this new project is to evaluate the understanding of the link between emissions and human exposure of SCCPs in the Nordic environment.
- Here, an initial benchmarking study has been performed for all 46 formula groups relative to seven PCBs, with evaluation of persistence (P), bioaccumulation (B) and long-range atmospheric transport potential (L_A).

Method

- A mechanistic, dynamic and integrated environmental fate and bioaccumulation multimedia model (CoZMoMAN) (Breivik et al., 2010), parameterized for the western part of the Baltic Sea drainage basin, was applied (Fig. 1).
- Each formula group of SCCPs was represented by one isomer. Physical-chemical properties were gathered from the scientific literature or estimated if necessary (Table 1).
- A hypothetical emission scenario was applied, using 1 t/yr to air for 70 years, followed by zero emission for 10 years.
- P was calculated as the percentage left in the physical environment after 10 years without emissions.
- B was evaluated by recording the concentration in a 29 year old female following 70 years of constant emissions.

Figure 1: Illustration of the model CoZMoMAN.

L_A was calculated as the characteristic travel distance (Bennett et al., 1998), i.e. the distance it takes for the air concentration to decrease to ≈37 % (1/e) of the initial concentration.

Results & discussion

- P of SCCPs are comparable to the least persistent of the PCBs (Fig. 2).
 P tends to increase with increasing degree of chlorination.
- SCCPs are comparable to PCBs with regard to L_A, but exhibit minor differences (Fig. 3). A more detailed analysis suggests that deposition rather than reaction limits L_A for most SCCPs.
- SCCPs appear to be less bioaccumulative than PCBs, but the results are highly sensitive to the input metabolism rate constants (Fig. 4).
 B tends to increase with increasing number of carbon- and chlorine atoms.

Further research

- Property data (Table 2, Fig. 4) remain uncertain. An uncertaintyand sensitivity analysis is therefore planned.
- In the next part of the project a realistic emission scenario will be applied, and results compared with measured environmental levels in the Nordic environment.

Acknowledgements

We are grateful to The Research Council of Norway, project no. 196191, for funding.

Table 1: Property data for SCCPs.

Property	Range of values	Reference
Log K _{ow}	4.6 – 7.4	Hilger et al., 2011; KOWWIN (Epiwin 4.1, Experimental Value Adjusted method)
Log K _{aw}	-6.7 – -0.8	Drouillard et al., 1998; KOWWIN (Epiwin 4.1, Experimental Value Adjusted method)
Heat of phase transfer (ΔU, J/mol)	$\Delta U_{ow} = -20\ 000$ $\Delta U_{aw} = 60\ 000$	Assumed values
Activation energy (J/mol)	Atmosphere: 10 000 Other compartments: 30 000	Assumed values
Atmospheric reaction rate (cm³/molecules×sec)	1.0 · 10 ¹² – 1.3 · 10 ⁻¹¹	AOPWIN (Epiwin 4.1)
Environmental half-life (h)	Water/forest canopy: $2.2 \cdot 10^3 - 3.3 \cdot 10^3$ Soil: $4.5 \cdot 10^3 - 6.6 \cdot 10^3$ Sediment: $2.0 \cdot 10^4 - 3.0 \cdot 10^4$	Sediment: Derived from ECB, 2008; Water = 1/9 × sediment, soil = 2 × water
Metabolism rate constant (h-1)	Grass: $2.1 \cdot 10^4 - 3.1 \cdot 10^4$ Fish: $2.2 \cdot 10^4 - 3.3 \cdot 10^{3*}$ or $4.5 \cdot 10^5 - 2.4 \cdot 10^{3**}$ Mammals: $1.1 \cdot 10^3 - 6.6 \cdot 10^{1*}$ or $3.1 \cdot 10^4 - 1.7 \cdot 10^{2**}$	Grass: Derived from half-life in forest canopy; Fish: *Derived from Fisk et al., 2000; **BCFBAF (Epiwin 4.1); Mammals: 5 x rate constant in fish (Arnot et al., 2010)
Feces/blood partition coefficient	2.0 · 10 8	Moser and McLachlan, 2002; Czub and McLachlan, 2004

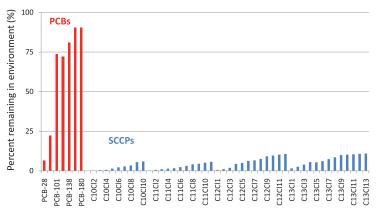


Figure 2: Persistence (% remaining in the physical environment after 10 years without emissions).

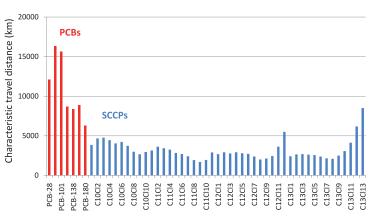


Figure 3: Long-range transport potential (in km).

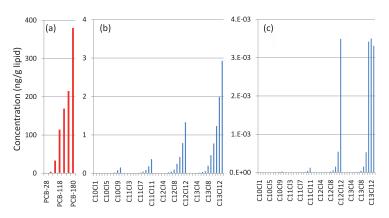


Figure 4: Concentration in a 29-year old female following 70 years of constant emissions (a) PCBs, (b) SCCPs based on estimated metabolism rate constants and (c) SCCPs based on experimental metabolism rate constants.

References

Arnot, J. A. et al. *Environ. Toxicol. Chem. 2010*, 29(1), 45-55.
Bennett, D. H. et al. *Environ. Sci. Technol. 1998*, 32(24), 4023-4030.

Breivik, K. et al. *Environ. Int. 2010*, 36(1), 85-91.

Czub, G. and M. S. McLachlan. *Environ. Toxicol. Chem.* 2004, 23(10), 2356-2366.

Drouillard, K. G. et al. *Environ. Toxicol. Chem.* 1998, 17(7), 1252-1260. ECB. European Union Risk Assessment Report. Alkanes, C10-13, chloro. Updated version

2008. European Chemicals Bureau, European Communities, 2008.

Fisk, A. T. et al. *Environ. Toxicol. Chem. 2000*, 19(6), 1508-1516.

Hilger, B. et al. *Environ. Sci. Technol. In press.*Moser, G. A. and M. S. McLachlan. *Environ. Sci. Technol. 2002*, 36(15), 3318-3325.

NILU PP 8/2011 ISK

Poster_April_2011_endelig.indd 1 10.05.2011 14:03:08