Global, Long-term Volcanic SO₂ Measurements from Satellites and the Significance to Climate

Fred Prata¹, Simon Carn², Lieven Clarisse³ and Andreas Richter⁴

Introduction There is increasing interest in the gaseous composition of the atmosphere, especially with the recognition that changes are occurring more rapidly than expected and through both anthropogenic and natural causes. Sulphur dioxide (SO₂) has both natural and man-made sources, has a significant effect on the radiative forcing of the atmosphere and significant vertical structure. In recent years several satellite instruments have demonstrated that the total column of SO₂ can be measured well and it has been shown that some limited vertical information can be obtained due to the sensitivity of the kernel functions [1– 4]. Retrievals of total or partial column SO₂ can be made using infrared (IR) [2,5] ultra-violet (UV) [3,7], and microwave satellite instruments and here we concentrate on the IR and UV measurements. In the UV, TOMS, SCIAMACHY, GOME, OMI, GOME-2 and OMPS provide global information on SO₂ at differing spatial and time-scales dating back to 1979. In the IR, HIRS, MODIS, AIRS, SEVIRI, GOES and IASI provide similar information, also going back to 1979. Many of these sensors can only detect SO₂ above a certain threshold and the IR sensors mostly detect SO₂ in the upper-troposphere/lower stratosphere (UTLS). The UV sensors have better sensitivity to emissions closer to the surface and are able to measure passively degassing volcanic emissions as well as emissions from anthropogenic sources [1,7]. Thus they are wellsuited to assessing the contributions of SO_2 from both strong and weak volcanic eruptions. Combing the IR with the UV measurements offers the possibility to explore the vertical structure of SO₂ emissions and potentially separate out natural from anthropogenic emissions in the upper troposphere. By utilizing the more accurate modern satellite instruments, such as IASI, AIRS, GOME-2 and OMI to post-calibrate older measurements (e.g. from TOMS and HIRS) a long time series of volcanic SO₂ emissions, dating from 1979 is being developed. The data-set has the potential to offer an improved climatology of volcanic SO₂ emissions to the UTLS and will allow models to better constrain the effects of SO₂ on the radiative balance and hence on climate. These data may be considered as a global climatology of volcanic SO₂ emissions and could be used as an SO₂ inventory for climate models or as validation data for hindcast and model sensitivity experiments.

Time-Series Initial estimates of SO₂ emissions from OMI, GOME-2, AIRS and IASI are shown in the panels of Figure 1. Detailed inter-comparisons have not yet been completed but will entail careful consideration of sampling differences, timing, spatial resolution and differing vertical sensitivities.

Instrument/	OMI	GOME-2	IASI	AIRS	TOMS	HIRS	50 - 0 - M	AW WAMANA	MALINA			W how how the world		Awwww.lamay		s ⊲ I
Parameter							-50 -50 -50 -50 -50 -50 -50 -50 -50 -50	M ^A MJJJ 2007	ASOND	J F M A M J J 2008	A'S'O	, N D J F M	A'M'J'	J'A'S'C	2010	F
Spacecraft	Aura	MetOp-A	MetOp-A	Aqua	Nimbus-7	NOAA	75					2009				,
					Meteor-3	MetOp		– OMI – IASI								
					Earth Probe								1			
Launch date	15/07/2004	19/10/2006	19/10/2006	04/05/2002	24/10/1978	05/11/1978				×		<u>fila</u>	hev			
Data available from	01/10/2004	07/03/2007	30/11/2006	31/08/2002	01/11/1978	01/12/1978	50 -	se.		, Sector	Kasa	Dalafoubt	Saryc	iia		
Data-set length (years)	8	6	5	10	27	34	dex	ouma	. <u>=</u>			Red		del Hi	_	
(up to 01/06/2012)								le la F	at Te					svado	Iragira	
Swath width (km)	2600	1920	2200	1650	2800	2230	otio	Piton c rs)	-Jebe	e c			e î	ne, Ne	Vyamu	Slit
Pixel size (km x km)	13x24	40x80	12x12	13.5x13.5	50x50	18.5x18.5		melte	outan	, Kilau oputai			andin	u plur		n n
Frequency	Daily	Daily	Twice per day	Twice per day	Daily	Up to 4 per day	Ab	ilsk (s	Etra	alma Etna S	g		Fern ilsk (s	Asia	- I	- Sou
Measurement	UV	UV	IR	IR	UV	IR		2 2	soputa	Bagar	Kila.		2			
Detection limit (DU)	0.2	0.5	5	6	5	20	1 1	Lilling Mandalata		1 Har Minhama		hala ita ita	Millel N	الديدان البغل	Albert Mak	
Min detectable mass (kt)	0.05	1	0.5	0.7	7	10	What when	MAMMA ANALI I I MANANA MANANA	WWW Hohad WWWWWWW	Manda Window And Part I and I and			Mill Y	WALVAL AL	ANNINA INA	
							J F	MA 2007	ASONC	2008 J F M A M J	JASO) N D J F M	А'М'Ј 2009	J'A'S'O	NDJ	FI

Table 1: Characteristics of satellite sensors used to measure global volcanic SO₂ emissions.

Figure 1. Time-series of total SO₂ mass estimated by different sensors. *Top-panel:* AIRS SO₂ mass, *Middle-panel:* IASI and GOME-2, and *Bottom-panel:* SO₂ absorption index for IASI and OMI.

AIRS Upper Troposphere Lower Stratosphere (UTLS) SO₂ Mass. Year:2002-2011

3000 2500

2000 -

1500 -

1000 -

500 -

250

200

150 -

100 -

 $SO_{2}(kt)$

GOME

IASI

Figure 2. Time-series of total SO₂ mass (kt) estimated from AIRS 7.3 µm measurements for the years 2002–2011. Note that AIRS detects SO₂ in the UTLS and therefore is an excellent monitor for emissions that potentially have a climate impact.

(km)

SO₂-retrievals from Satellites

Conclusions Some progress has been made in utilising current satellite instruments to infer total SO₂ mass injections into the UTLS. By compositing and comparing these data a methodology is being developed to establish a long-term global data-set of SO₂ mass for use in climate sensitivity studies, for input to dispersion models [4,6] and for investigating the fate of volcanic SO_2 in the atmosphere (see Figure 5). The eventual goal is to use the improved precision and accuracy of the current instruments to calibrate retrievals from older, less precise measurements to establish a data-set spanning more than 30 years.

Current study (IASI derived 20 years of literature

References

[1] Carn S.A., Krueger A.J., Bluth G.J.S., Schaefer S.J., Krotkov N.A., Watson I.M., Datta S., Volcanic eruption detection by the Total Ozone Mapping Spectrometer (TOMS) instruments: a 22-year record of sulfur dioxide and ash emissions, In: Oppenheimer

Figure 3. TOMS (*left*), OMI (*middle*), and AIRS (*right*) SO₂ total column retrievals (in Dobson Units, DU) for an eruption of Manam volcano, PNG in 2002.

Figure 4. Photograph of SO₂ **emissions from**

Difficulties arise when combining and comparing SO₂ retrievals from different satellite seniors because each sensor has specific measurement characteristic (see Table 1). Comparisons can be made between retrievals when the sensors are able to view the same SO₂ cloud at similar times and when the whole cloud lies within instruments' the field-of-view. Figure 3 shows one such comparison between TOMS, OMI and AIRS-in this case the comparison is favourable. Another difficulty to overcome is due to the differences in vertical sensitivity of the UV and IR sensors. Generally, UV sensors "see" emissions closer to the surface. SO₂ emissions from Turrialba volcano, Costa Rica (Figure 4) can be detected by OMI but are rarely seen by AIRS.

Figure 5. SO₂ **e-Folding times (days) for significant volcanic** eruptions determined from IASI and other historical data. Two pathways for conversion can be identified. (Analyses by L. Clarisse.)

¹Dr Fred Prata (fpr@nilu.no), Climate and Atmosphere Department, Norwegian Institute for Air Research, Kjeller, Norway. ²Dr Simon Carn (scarn@mtu.edu), Michigan Technological University, Houghton, MI, USA. ³Dr Livien Clarisse, Uiversité Libre de Bruxelles, Bruxelles, Belgium. ⁴Dr Andreas Richter, University of Bremen, Bremen, Germany.

C, Pyle DM, Barclay J (eds) Volcanic degassing, Geological Society, London, Special Publications, **213**, pp 177–202, 2003.

[2] Clarisse, L., Hurtmans, D., Clerbaux, C., Hadji-Lazaro, J., Ngadi, Y., and P.-F. Coheur, Retrieval of sulphur dioxide from the infrared atmospheric sounding interferometer (IASI), Atmos. Meas. Tech., 5, 581–594, 2012.

[3] Eisinger, M., and J. P. Burrows, Tropospheric Sulfur Dioxide observed by the ERS-2 GOME Instrument, Geophys. Res. Lett., 25, 4177-4180, 1998.

[4] Kristiansen, N. I., Stohl, A.; Prata, A. J., Richter, A., Eckhardt, S., Seibert, P., Hoffmann, A., Ritter, C., Bitar, L., Duck, T. J., Stebel, K., Remote sensing and inverse transport modeling of the Kasatochi eruption sulfur dioxide cloud, J. Geophys. Res., 115, D00L16, doi:10.1029/2009JD013286, 2010.

5] Prata, A. J., Rose, W. I., Self, S., and D. M. OBrien, Global, long-term sulphur dioxide measurements from TOVS data: A new tool for studying explosive volcanism and climate, In Volcanism and the Earths Atmosphere (ed. Robock and Oppenheimer), Geophysical Monograph, 139, 75-92, 2003.

[6] Seibert, P., Kristiansen, N. I., Richter, A., Eckhardt, S., Prata A. J., Stohl, A.: Uncertainties in the inverse modelling of sulphur dioxide eruption profiles, Geomatics, Natural Hazards and Risk, 2(3), 201-216, doi:10.1080/19475705.2011.590533, 2011.

[7] Yang, K., Krotkov, N. A., Krueger, A. J., Carn, S. A., Bhartia, P. K., and P. F. Levelt, Retrieval of large volcanic SO₂ columns from the Aura Ozone Monitoring Instrument: Comparison and limitations, J. Geophys. Res., 112, D24S43, doi:10.1029/2007JD008825, 2007.

Turrialba volcano, Costa Rica.

NILU PP 6/2012 FPr