

Data quality 2001, quality assurance, and field comparisons

Wenche Aas, Anne-Gunn Hjellbrekke and Jan Schaug

Norwegian Institute for Air Research PO Box 100, NO-2027 Kjeller, Norway Chemical Co-ordinating Centre of EMEP (CCC)

NILU	:	EMEP/CCC-Report 6/2003
REFERENCE	:	O-95024
DATE	:	JULY 2003

EMEP Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe

Data quality 2001, quality assurance, and field comparisons

Wenche Aas, Anne-Gunn Hjellbrekke and Jan Schaug

Norwegian Institute for Air Research P.O. Box 100, N-2027 Kjeller, Norway

Contents

Page

Su	mmary	5
1.	Introduction	7
2.	Measurement programme and data completeness	7
3.	Ion balances	14
4.	Accuracy, detection limits and precision	14
5.	Results from field comparisons	15
	5.1 Main components in air	15
	5.1.1 Introduction	15
	5.1.2 Reference instrumentation	16
	5.1.3 Comparison at Dübendorf, Switzerland	16
	5.1.4 Comparison at Bilthoven, the Netherlands	18
	5.1.5 Comparison at Iskrba, Slovenia	21
	5.2 Comparison at of SO_2 measurements (filterpack and UV	
	fluorescence monitor) at Illmitz, Austria, 2001	23
	5.3 Comparison of SO_2 measurements (filterpack and TCM) in	2.4
	Germany and Turkey	24
	5.4 Summary of the results from the field comparisons	27
6.	Results from laboratory comparisons	34
	6.1 Main components	34
	6.2 Heavy metals	35
	6.3 Laboratory comparison of POPs	36
7.	New flags	36
	7.1 Introduction	36
	7.2 Quality (DQ) flags	37
	7.2.1 Flags based on laboratory comparison	37
	7.2.2 The flags based on field comparison	39
	7.3 Ion balance flags	39
8.	Audits	40
	8.1 Introduction	40
9.	References	40
10	List of participating institutions and the pational quality assurance	
10.	managers (NQAM)	42
An	nex 1 Data quality objectives	45
An	nex 2 Ion balances in precipitation samples 2001	49
An	nex 3 Detection limits and precision	57
An	nex 4 Random and systematic errors in the lab intercomparisons	81
An	nex 5 Note to be attached to the German EMEP data (by Markus Wallasch, QA–Manager)	109

Annex 6	Estimating errors from laboratory comparisons1	13
Annex 7	Ion balance flags1	17

Summary

This report is mainly concerned with the quality of the 2001 data and new results from field and laboratory comparisons.

The requirement with respect to data completeness for the main components in precipitation, i.e. 90 per cent, is generally met, and only two participants have less than a complete precipitation measurement programme. The situation is less favourable for air components with respect to data completeness. There a strong need for more sites for nitrogen components in air, and only two countries perform accurate measurements of nitric acid and particulate nitrate, and ammonia and ammonium in particles separately by use of denuder systems.

The ion balance for many countries was within ± 20 per cent, which indicate valid data when pH is less than 5.5 (Annex 2). For higher pH values there is often a systematic difference that is not yet fully understood. However, it should be emphasized that the ion balance does not give an exact assessment of the quality. A flagging system has been developed to fully utilize the information from the ion balance test.

Laboratory comparison of the main components in precipitation and air is carried out annually. The main message is that the laboratory performances in general are satisfactory, but that there nevertheless is room for improvements for some components like chloride, magnesium, calcium, and potassium. Laboratory comparison of heavy metals is also performed annually, and the results are generally satisfactory with a few exceptions.

Results from the field comparisons in the Netherlands, Slovenia and Switzerland are presented in this report. In Dübendorf (CH) the monitors and reference measurements has fairly good correlation but are heavily biased. The monitors give higher concentrations than the reference for both SO_2 and NO_2 . In Bilthoven (NL) the SO_2 monitor works satisfactory, but the NO_2 measurements were well correlated the first five months only followed by heavily biased results. In Iskrba (SI) the field intercomparison went well except for contamination problems for sumNH₄ and sumNO₃ during five months.

National organized field comparison of SO_2 have been performed in Germany and Turkey to compared the old TCM method and the recommended filterpack method. All these intercomparisons show that the TCM method underestimate the concentrations. There are major problems using the TCM method at very low concentrations as in Schauinsland. Results from parallel sampling of SO_2 at Illmitz (AT02) in 2001 using filterpack and UV fluorescence methods show that the monitor works satisfactory in Austria.

A new system has been developed to flag the main components in air and precipitation. The DQ flag has been divided in two two-digit numbers, one describing the performance in field intercomparisons and one describing the quality of the laboratory results. Each two-digit flag is furthermore defined by letting the first digit represent the systematic error and the second digit the random error.

Annex 3 contains detection limits and estimates of precision, both for the complete measurement methods applied, and for the chemical method in the laboratories. This Annex is based on the information and data the participants themselves have forwarded to the CCC.

Data quality 2001, quality assurance, and field comparisons

1. Introduction

The aim of quality assurance is to provide data with sufficiently good and known quality, and this series of reports is intended to document the EMEP data quality and the progress made. The present report is relevant for the 2001 data. All data included in the EMEP program is covered by this data quality report, most of the information available on the data quality is, however, on acidifying and eutrophying components.

Parts of the information given here are collected from the participating laboratories, this being data on detection limits and precision. CCC organizes annually different types of comparisons, and the EMEP Laboratory intercomparison and results from field comparisons with reference instrumentation provide important information of the data quality. Information of both these types of comparisons is used to develop a new flagging system for all historical EMEP data based on statistical criteria.

Calculations of ion balances in precipitation samples are important supplementary information to evaluate the data quality; however, the ion balance (IB) check is mainly a control of the analytical procedure, and contamination or other field problems is not detected by this control. In addition, at high pH and/or at low ion strength the IB test is more uncertain. A flagging system has been developed to fully get use of the information from the ion balance test.

2. Measurement programme and data completeness

Since the start in 1978, the measurement frequency for all air and precipitation measurements of the main components has been daily; EMEP's measurement programme in 2001 is given in Table 1. It is now an opening for weekly precipitation sampling even though daily sampling still is preferable. There are a few sites with weekly precipitation sampling and even some with monthly data collection, which is not recommended. Further details on the sampling program and measurement frequency at the different sites are found in the data reports (Hjellbrekke, 2003). All participating countries, except Iceland and Lithuania, had complete measurement programmes for the main components in precipitation in 2001. The data completeness should be at least 90 per cent (Annex 1) and as seen from Table 2, most participants broadly met this requirement for the precipitation components.

The data completeness for the air components is less satisfactory. The main problem is evident from Table 3; the number of sites providing measurements of nitrogen components is far too low. Monitoring of nitrogen components is becoming increasingly important since the large reduction of sulphur dioxide emissions in Europe has increased the relative importance of nitrogen components as acidifying agents. Furthermore, nitrogen compounds do not only contribute to the acidification and eutrophication of ecosystems but are precursors of tropospheric ozone and they contribute to the total particulate matter. It is consequently highly desirable that more sites take up measurements of all nitrogen components in the programme.

	Components	Measurement period	Measurement frequency
Gas	SO ₂ , NO ₂	24 hours	daily
	O ₃	hourly means stored	continuously
	Light hydrocarbons C2-C7	10-15 mins	twice weekly
	Ketones and aldehydes (VOC)	8 hours	twice weekly
	Hg	24 hours	weekly
Particles	SO4 ²	24 hours	daily
	Cd, Pb (first priority), Cu, Zn, As, Cr, Ni (second priority)	weekly	weekly
Gas + particles	$HNO_{3}(g)+NO_{3}(p),$ $NH_{3}(g)+NH_{4}(p)$	24 hours	daily
	POPs (PAH, PCB, HCB, chlordane, lindane, α -HCH, DDT/DDE)	48 hours	weekly
Precipitation	Amount, $SO_4^{2^-}$, NO_3^- , CI^- , pH, NH_4^+ , Na^+ , Mg^{2^+} , Ca^{2^+} , K ⁺ , conductivity	24 hours/weekly	daily/weekly
	Hg, Cd, Pb (first priority), Cu, Zn, As, Cr, Ni (second priority)	weekly	weekly
	POPs (PAH, PCB, HCB, chlordane, lindane, α -HCH, DDT/DDE)	weekly	weekly

Table 1:EMEP's measurement programme for 2001.

It is well known that filterpacks normally will give biased results for NO_3^- , HNO_3 , NH_4^+ and NH_3 , due to chemical reactions and loss of volatile substances from the aerosol filter, followed by a corresponding increase of substance on the impregnated filter. The concentrations of the individual components should therefore be used critically. In Table 3 it is seen that several countries report the individual concentrations; however, only sites in Hungary, the Netherlands (only for ammonia), and Italy use denuders where a quantitative separation of gas and particle is possible. It is highly recommended that more sites use denuders to separate particle and gas components.

Ozone measurements were carried out at "normal" EMEP sites but also at sites designated for ozone alone or in combination with other measurements not included in EMEP's programme.

Few Parties reported data on PM_{10} in 2001: AT, CH, DE, ES, NO and CEC. An increasing number of sites have, however, started PM_{10} measurements so this situation will probably change in the near future. Even less countries measure Na, Mg, Ca, Cl, and K in particles. It is, however, recommended to take up measurements of these ions, at least at the sites measuring PM_{10} .

For heavy metals the data capture is lower than for the main components, especially for air samples. However, several countries analyze heavy metals in air on one or two samples weekly from daily PM_{10} aerosol samples. This will give poor data completeness, but the seasonal distribution is anyhow satisfactory, and the annual average will probably give a reasonable estimate even though there are no measurements on the majority of the days.

Code	mm	mm off	рН	SO₄	XSO₄	NH₄	NO₃	Na	Mg	CI	Ca	к	cond
AT0002R	100.0		99.9	99.8	99.8	99.8	99.8	99.8	99.8	99.8	99.6	96.1	99.8
AT0004R	100.0		99.9	99.8	99.8	99.8	99.8	99.8	99.8	99.8	99.8	99.8	99.8
AT0005R	100.0		91.8	91.7	91.7	91.8	91.7	91.8	91.8	91.7	91.7	90.4	91.8
CH0002R	100.0	-	99.8	94.3	94.3	94.3	94.3	94.3	94.3	94.3	94.3	94.3	99.6
CH0004R	99.7	-	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
CH0005R	100.0	-	99.8	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	99.6
CZ0001R	99.7	-	99.9	99.6	99.6	99.8	99.6	91.3	91.3	99.6	99.8	91.3	99.8
CZ0003R	100.0		97.5	97.0	96.9	97.9	97.0	99.2	97.8	97.0	97.8	99.2	98.9
DE0001R	99.7	-	99.4	99.4	99.4	99.4	99.4	99.4	99.4	99.4	99.4	99.4	99.4
DE0002R	100.0		96.5	95.7	95.7	95.7	95.7	95.7	95.7	95.7	95.7	95.7	96.5
DE0003R	95.9		99.8	99.8	99.8	99.8	99.8	99.8	99.8	99.8	99.8	99.8	99.8
DE0004R	100.0		98.7	99.3	99.3	99.3	99.3	99.3	99.3	99.3	99.3	99.3	98.7
DE0005R	99.7		99.7	99.7	99.7	99.7	99.7	99.7	99.7	99.7	99.7	99.7	99.7
DE0008R	99.7		99.8	99.8	99.8	99.8	99.8	99.8	99.8	99.8	99.8	99.8	99.8
DE0009R	99.7		81.2	81.2	81.2	81.2	81.2	81.2	81.2	81.2	81.2	81.2	81.0
DK0005R	99.7	-	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	97.1	100.0	100.0
DK0008R	99.7	-	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	99.1	100.0	100.0
DK0022R	99.7	-	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	95.3	100.0	100.0
EE0009R	100.0	-	100.0	99.7	99.7	99.2	99.7	99.7	99.7	99.7	99.7	99.7	100.0
EE0011R	100.0		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
ES0007R ES0008R ES0009R ES0010R ES0012R ES0012R ES0013R ES0014R ES0015R ES0016R	100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0		98.0 99.0 93.5 72.0 97.8 98.9 97.3 77.9 91.2 97.7	96.9 98.8 92.7 72.0 97.8 98.9 96.2 77.7 91.2 97.4	96.9 98.8 92.7 72.0 97.8 98.9 96.2 77.7 91.2 97.4	96.5 94.8 90.9 71.6 97.8 98.8 96.0 75.7 84.6 97.0	96.9 98.8 92.7 72.0 97.8 98.9 96.2 77.7 91.2 97.4	95.3 94.6 89.8 69.6 97.5 98.7 95.4 74.0 79.5 94.2	95.3 94.6 89.8 69.6 97.5 98.7 95.4 74.0 79.5 94.2	96.9 98.8 92.7 72.0 97.8 98.9 96.2 77.7 91.2 97.4	95.3 94.6 89.8 69.6 97.5 98.7 95.4 74.0 79.5 94.2	95.3 94.6 89.8 69.6 97.5 98.7 95.4 74.0 79.5 94.2	98.0 99.0 93.5 72.0 97.8 98.9 97.3 77.9 91.2 97.7
FI0004R	100.0	100.0	99.5	99.5	99.5	99.5	99.5	99.5	99.5	99.5	99.5	99.5	99.5
FI0009R	99.7	100.0	99.6	99.4	99.4	97.8	99.4	99.4	99.4	99.4	99.4	99.4	99.6
FI0017R	100.0	100.0	99.6	99.4	99.4	99.4	99.4	99.4	99.4	99.4	99.4	99.4	99.6
FI0022R	100.0	100.0	99.7	98.8	98.8	98.8	98.8	98.8	98.8	98.8	98.8	98.8	99.7
FR0003R	100.0		89.7	87.9	87.9	88.0	87.9	87.9	87.9	87.9	87.9	87.9	89.7
FR0005R	100.0		93.7	91.9	91.9	92.1	91.9	91.9	91.9	91.9	91.9	91.9	93.7
FR0008R	100.0		97.7	97.6	97.6	97.6	97.6	97.6	97.6	97.6	97.6	97.6	97.7
FR0009R	100.0		96.5	94.5	94.5	95.3	94.5	94.5	94.5	94.5	94.5	94.5	96.5
FR0010R	100.0		93.2	92.3	92.3	92.7	92.3	92.3	92.3	92.3	92.3	92.3	93.2
FR0012R	100.0		93.6	92.0	92.0	92.4	92.0	92.0	92.0	92.0	92.0	92.0	93.6
FR0013R	100.0		97.9	96.0	96.0	97.1	96.0	96.0	96.0	96.0	96.0	96.0	97.9
FR0014R	100.0		96.7	95.6	95.6	95.9	95.6	95.6	95.6	95.6	94.3	95.6	96.7

Table 2: Completeness for precipitation components, 2001.

1	abi	le	2,	cont
-		•	_,	00

Code	mm	mm off	pН	SO₄	XSO₄	NH₄	NO ₃	Na	Mg	CI	Ca	κ	cond
GB0002R GB0006R GB0013R GB0014R GB0015R	99.7 100.0 99.7 100.1 99.7	- - -	99.1 99.1 99.8 98.5 99.9	100.0 99.1 99.8 98.5 99.9	100.0 99.1 99.8 98.5 99.9	100.0 99.1 99.8 99.3 99.9	100.0 99.1 99.8 99.3 99.9	100.0 99.1 99.8 98.5 99.9	100.0 99.1 99.8 98.5 99.9	100.0 99.1 99.8 98.5 99.9	100.0 99.1 99.8 98.5 99.9	100.0 99.1 99.8 98.5 99.9	100.0 98.9 99.6 98.5 99.0
HR0002R HR0004R	100.0 100.0	-	97.8 99.2	97.3 99.0	96.9 99.0	96.0 98.9	97.3 99.0	95.9 98.7	95.9 98.7	96.9 99.0	95.9 98.1	95.9 98.7	97.8 99.2
IE00002R IE0001R IE0002R IE0003R IE0004R	23.0 83.3 100.0	100.0 100.0 - -	95.1 97.0 99.5 100.0	98.7 95.1 100.0 100.0 100.0	98.7 95.1 100.0 100.0 100.0	98.7 95.1 100.0 100.0 100.0	98.7 95.1 100.0 100.0 100.0	95.1 100.0 100.0 100.0	95.1 100.0 100.0 100.0	95.1 100.0 100.0 100.0	100.0 95.1 100.0 100.0 100.0	95.1 100.0 100.0 100.0	100.0 95.1 97.0 99.5 100.0
IS0002R IT0001R IT0004R	100.0 100.0 100.0	40.5	100.0 100.0 100.0	100.0 100.0 100.0	100.0 100.0 100.0	- 100.0 100.0	- 100.0 100.0	100.0 100.0 100.0	- 100.0 100.0	- 100.0 100.0	- 100.0 100.0	- 100.0 100.0	- 100.0 100.0
LT0015R	100.0	-	99.6	99.8	99.8	99.2	98.4	99.7	-	99.2	99.7	99.7	98.9
LV0010R LV0016R	100.0 100.0	-	99.6 99.3	98.7 96.9	98.7 96.9	99.5 98.3	98.7 97.1	99.0 90.8	99.4 88.4	98.3 97.1	99.4 88.3	95.4 85.8	99.1 99.0
NL0009R	100.0	-	95.4	94.8	94.8	93.7	94.8	91.6	91.6	94.8	91.6	91.6	91.6
NO0001R NO0008R NO0015R NO0039R NO0041R NO0055R NO0099R	100.0 100.0 99.7 100.0 100.0 100.0	-	99.5 97.7 95.4 99.4 97.7 95.5 99.4	98.6 99.0 98.1 99.2 99.7 94.0 99.0	98.6 99.0 98.1 99.2 99.7 94.0 99.0	98.6 97.7 95.1 98.9 99.5 92.3 99.0	98.6 99.0 98.1 99.2 99.7 94.0 99.0	98.6 99.0 98.2 99.2 99.7 94.0 99.0	98.6 99.0 98.2 99.1 99.7 94.0 99.0	98.6 99.0 98.1 99.2 99.7 94.0 99.0	98.6 98.5 96.3 99.1 99.7 93.7 99.0	98.6 97.6 95.0 98.9 99.5 92.1 99.0	99.5 99.5 98.8 99.7 97.8 97.7 99.4
PL0002R PL0003R PL0004R PL0005R	100.0 100.0 100.0 100.0	- - - 99.7	97.7 95.8 98.7 99.4	97.6 96.7 98.7 96.3	97.6 96.7 98.7 96.3	97.2 96.7 98.7 94.2	97.6 96.7 98.7 96.3	96.8 96.7 98.4 94.3	96.8 96.7 98.4 95.4	97.6 96.7 98.7 96.2	96.8 96.7 98.4 90.6	96.8 96.7 98.4 94.4	97.7 96.7 98.7 91.2
PT0001R PT0003R PT0004R		100.0 100.0 100.0	89.7 94.9 88.1										
RU0001R RU0013R RU0016R RU0018R	100.0 100.0 100.0 100.0	- - -	100.0 99.8 99.9 99.1	100.0 100.0 100.0 100.0	100.0 100.0 100.0 100.0	100.0 100.0 100.0 100.0	100.0 100.0 100.0 100.0	100.0 100.0 100.0 100.0	95.5 93.2 100.0 76.8	100.0 100.0 100.0 100.0	95.5 93.2 100.0 76.9	100.0 100.0 100.0 100.0	100.0 100.0 100.0 100.0
SE0002R SE0005R SE0011R	100.0 99.7 99.7	- - -	99.9 100.0 100.0	98.4 99.8 100.0	98.4 99.8 100.0	99.3 99.8 100.0	98.4 99.8 100.0	99.5 99.8 100.0	99.5 99.8 100.0	98.4 99.8 100.0	99.5 99.8 100.0	99.5 99.8 100.0	96.5 99.5 99.3
SK0002R SK0004R SK0005R SK0006R SK0007R	100.0 100.0 100.0 100.0 100.0	- - -	94.0 96.4 95.0 98.3 98.4	93.6 96.4 94.5 92.4 98.4	93.6 96.4 94.3 92.4 98.4	92.3 95.6 94.7 95.9 98.2	93.9 96.4 94.5 92.1 98.4	93.6 97.1 95.2 95.9 98.6	93.6 97.1 95.2 95.9 98.6	93.9 96.4 93.9 92.4 98.4	93.4 97.1 94.6 95.9 98.6	93.4 97.1 95.2 95.9 98.6	94.0 97.1 95.1 98.3 98.6
TR0001R	91.8	-	97.6	99.8	99.8	98.1	99.8	98.5	98.6	99.8	98.5	98.2	97.6
YU0005R YU0008R	100.0 100.0	-	100.0 100.0	100.0 100.0	98.9 99.4	100.0 99.8	100.0 98.1	96.2 96.7	96.2 95.2	98.8 99.0	96.2 96.7	96.2 83.3	100.0 100.0

Code	SO ₂	NO ₂	O ₃	SO4	$\rm XSO_4$	SNO ₃	NO ₃	HNO ₃	${\rm SNH}_4$	$\rm NH_4$	$\rm NH_3$	PM ₁₀	PM _{2.5}	SPM	Na	Ca	Mg	к	CI
AT0002R	98.9	99.2	96.2	97.5	-	98.1	-	-	98.1	-	-	98.6	87.9	-	-	-	-	-	,
AT0004R AT0005R	98.4 99.5	98.4 99.7	93.7 96.0	-	-	-	-	-	-	-	-	98.4 98.9	-	-	-	-	-	-	-
AT0030R	95.3	-	95.7 99 1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AT0032R	-	-	93.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AT0034G AT0037R	-	-	93.0 94.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AT0038R	-	-	97.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AT0040R	-	-	99.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AT0042R AT0043R	-	-	95.2 95.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AT0044R	-	-	85.3 95.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AT0045R	-	-	92.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AT0047R	-	-	96.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BE0001R BE0032R	-	76.9 90.2	92.5 93.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BE0035R	-	91.0	94.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CH0001G CH0002R	80.8 98.1	71.0 99.2	- 94.7	100.0 97.5	-	-	-	-	-	-	-	- 99.5	- 100.0	92.3	-	-	-	-	-
CH0003R CH0004R	-	98.9 100.0	95.1 95.2	-	-	-	-	-	-	-	-	100.0	- 99 7	-	-	-	-	-	-
CH0005R	97.5	97.3	93.4	99.5	-	99.7	-	-	99.7	-	-	100.0	-	-	-	-	-	-	-
CZ0001R	99.5 100.0	99.5 95 3	98.1 98.5	16.4 16.7	-	99.7 99.7	-	-	100.0	-	-	-	-	-	-	-	-	-	-
DE0001R	48.5	97.8	88.3	48.5	-	48.5	-	-	48.5	-	-	93.4	-	-	-	-	-		-
DE0002R	58.9	48.8	92.4	-	-	-	-	-	-	-	-	95.3	95.1	-	-	-	-	-	-
DE0003R DE0004R	96.4 50.1	- 99.7	95.2 94.8	96.4 54.5	-	95.9 50.1	-	-	96.2 50.1	-	-	93.4 98.4	80.5 97.3	-	-	-	-	-	-
DE0005R DE0007R	48.5 96 7	- 91.5	95.9 95.6	- 98 9	-	- 96 7	-	-	- 98 4			99.5 97 8	-	-	-	-	-	-	-
DE0008R	72.1	99.5	95.5	-	-	-	-	-	-	-	-	97.8	-	-	-	-	-	-	-
DE0009R DE0012R	99.7	96.7	96.7 77.0	99.5	-	99.5	-	-	97.0	-	-	99.7	-	-	-	-	-	-	-
DE0017R	-	-	4.4 92.0	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
DE0035R	-	-	93.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DE0039R DE0042R	-	-	90.4 40.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DK0003R	81.9	-	-	81.4	80.8	75.6	-	-	81.4	-	-	-	-	-	81.1	-	-	-	-
DK0005R DK0008R	93.7 96.4	- 98.1	99.4 -	93.2 94.5	92.9 94.5	92.6 94.8	-	-	93.4 95.9	-	-	-	-	-	93.4 94.8	-	-	-	-
DK0031R	-	-	96.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
DK0032R DK0041R	-	-	94.8 98.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
EE0009R	95.3	97.5	98.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ES0007R	96.4 97 9	94.2 97.4	95.3 97 1	96.4	-	- 95 1	-		95.6		-	- 78.4	77.0	93.4	-	-	-	-	-
ES0008R	98.1	97.9	97.8	93.7	-	96.2	-	-	94.2	-	-	69.9	70.1	89.0	-	-	-	-	-
ES0009R ES0010R	97.5 97.1	96.6 96.6	97.2 95.6	97.0 95.6	-	99.2 95.6	-	-	98.9 94.2	-	-	70.7	70.1	93.7	-	-	-	-	-
ES0011R ES0012R	97.6 98.5	97.2 98.2	97.6 98.5	97.5 98.4	-	99.2 97 0	-	-	97.0 98.6			76.7 79.7	75.1 77.8	90.7 95.3	-	-	-	-	-
ES0013R	97.8	96.7	97.3	92.6	-	97.5	-	-	98.1	-	-	74.5	70.4	89.6	-	-	-	-	-
ES0014R ES0015R	98.0 95.3	97.1 93.3	97.8 94.9	94.0 78.4	-	97.3 88.2	-	-	96.7 86.0	-	-	75.0 67.1	66.0	93.4 75.1	-	-	-	-	-
ES0016R	80.8	78.4	79.7	76.4	-	81.1	-	-	75.3	-	-	74.8	66.0	68.2	-	-	-	-	-
FI0009R FI0017R	99.5 76.2	92.6 75.5	79.9 75.8	99.5 76.2	-	99.5 76.2	-	-	99.7 75.9	-	-	-	-	-	-	-	-	-	-
FI0022R	85.2 98.6	97.3 97.0	96.5 96 9	85.2 98 9	-	85.2 98.6	-	-	99.7 99.5	-	-	-	-	-	-	-	-	-	-
FR0003R	73.2	-	- 00.0	74.2	-		-	-		-	-	-	-	-	-	-	-	-	-
FR0005R	99.7 98 1	-	- 00 2	97.8 97 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR0009R	99.2	-	96.1	95.1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR0010R FR0012R	99.7 92.3	-	97.3 91.6	99.2 91.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FR0013R	94.0	-	96.5 86.1	94.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GB0002R	61.1	_	99.3	99.5	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
GB0004R	64.9	-	-	83.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GB0007R	64.9	-	-	81.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GB0013R GB0014R	53.2 57.5	-	96.5 79.4	98.6 97.0	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-
GB0015R	82.5	-	58.5	80.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GB0031R	- 55.4	-	82.3	- 00.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GB0032R GB0033R	-	-	99.4 98.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-
GB0034R	-	-	97.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GB0030R GB0037R	-	88.4	53.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GB0038R GB0039R	-	93.5	97.2 98.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-
GB0043R	-	64.0	93.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GB0044R GB0045R	1	- 87.5	97.6 90.7						-			-					-	-	-

Table 3, cont.

Code	SO2	NO ₂	O ₃	SO_4	$\rm XSO_4$	SNO_3	NO ₃	HNO_3	SNH_4	$\rm NH_4$	\mathbf{NH}_{3}	PM ₁₀	PM _{2.5}	SPM	Na	Ca	Mg	к	CI
GR0001R GR0002R	90.1 -	88.7 -	- 74.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
HU0002R	95.1	98.1	92.9	95.3	-	-	95.3	95.3	-	95.3	95.3	-	-	-	-	-	-	-	-
IE0001R IE0002R	99.7 92.1	100.0	-	99.7 91.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
IE0003R	-	-	-	57.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
IE0004R	-	-	99.3	49.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
IS0002R	-	-	-	97.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
IT0001R	94.8	95.6	90.6	94.8	-	-	94.8	94.8	-	94.8	94.8	-	-	-	-	-	-	-	-
IT0004R	100.0	98.1	98.7	62.2	-	-	62.2	-	-	61.4	-	62.2	62.2	61.4	-	-	-	-	-
LT0015R	98.6	99.2	98.9	-	-	98.4	-	-	98.9	-	-	-	-	-	-	-	-	-	-
LV0010R LV0016R	96.4 88.8	99.7 92.3	80.4 -	99.7 92.3	-	99.7 90.7	99.7 92.3	-	98.9 92.3	98.9 92.3	-	-	-	-	-	-	-	-	-
MT0001R	-	-	92.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
NL0009R NL0010R	99.7 97.5	87.9 90.4	90.6 91.5	89.6 94.0	-	-	89.6 94.0	-	-	89.6 94.0	- 56.7	-	-	-	-	45.2 -	-	-	-
NO0001R	98.1	99.7	99.4	98.9	98.9	69.9	71.0	98.4	73.4	73.7	98.1	99.5	99.5	-	97.8	98.1	98.1	97.8	94.2
NO0008R NO0015R	98.6 100.0	100.0 98.4	- 99.9	96.7 99.5	96.7 99.5	70.1 69.3	70.1 69.3	98.6 100.0	71.2 74.8	73.4 74.8	96.4 100.0	-	-	-	98.6 100.0	98.4 100.0	98.6 100.0	98.1 99.7	97.5 95.9
NO0039R	97.8	100.0	99.4	97.5	97.5	71.0	71.0	98.4	72.9	72.9	96.9	-	-	-	96.7	96.7	96.7	96.4	94.2
NO0041R	96.2 100.0	99.2	98.8 96.7	95.3 98 g	95.3 08 0	69.9 66.3	70.1	96.2 99 7	69.9 74.8	73.2	93.2 100.0	-	-	-	95.9 99 7	95.9 99 7	95.9 99 7	95.9 98 g	86.0 94.2
NO0043R	-	-	98.5	- 00.0		-	- 00.0	-	-	-	-	-	-	-	-	-	-	- 00.0	-
NO0045R	-	-	97.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
NO0048R	-	-	99.4 99.7	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-
NO0055R	99.5	99.7	99.9	98.9	98.9	67.9	67.9	99.5	71.5	74.2	96.7	-	-	-	99.5	99.5	99.5	99.2	95.6
NO0056R	-	-	90.7	-	-	-	-	-	-	-	-	- 88.4	- 96.1	-	-	-	-	-	-
PL0002R	95.1	78.1	99.7	95.1	-	94.8	95.1	-	88.5	88.5	-	-	-	-	-	-	-	-	-
PL0003R	100.0	100.0	99.7	100.0	-	100.0	100.0	-	100.0	100.0	-	-	-	-	-	-	-	-	-
PL0004R PL0005R	100.0 96.4	100.0 98.4	99.9 96.6	100.0 98.9	-	99.7 99.2	100.0	-	100.0 99.5	100.0	-	-	-	-	-	-	-	-	-
PT0004R	-	-	93.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
RU0001R	87.4	-	-	89.9	-	-	89.9	-	-	89.9	-	-	-	-	-	-	-	-	-
RU0018R	92.0 81.4	-	49.5	93.2 81.4	-	-	93.2 81.4	-	-	93.2 81.4	-	-	-	-	-	-	-	-	-
SE0002R	99.7	99.5	97.5	99.7	-	97.5	-	-	98.6	-	-	-	-	100.0	-	-	-	-	-
SE0005R	99.7	99.7	-	98.1	-	98.4	-	-	99.7	-	-	-	-	100.0	-	-	-	-	-
SE0008R SE0011R	97.3	99.2 99.2	- 99.7	98.4 99.5		- 97.5			- 96.7	-	-		-	97.8 99.2		-		-	
SE0012R	-	-	87.9	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SE0013R SE0032R	-	-	99.8 95.8	-		-	-			-	-	-		-		-	-	-	-
SE0035R	-	-	99.6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SE0039R	-	-	96.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SI0008R SI0031R	98.6	-	89.5 89.1	98.9		98.6	-		98.9	-	-	-		-		-	-	-	-
SI0032R	-	-	94.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SI0033R	-	-	84.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SK0002R	99.2 98.6	98.1 99 7	- 98 0	99.2 99.7	-	-	99.2 99.7	99.2 98.6	-	-	-	-	-	-	-	-	-	-	-
SK0005R	98.1	99.5	- 30.0	99.5	-	-	99.5	98.1	-	-	-	-	-	-	-	-	-	-	-
SK0006R	93.4	97.5	97.0 77.8	98.1	-	-	98.4	93.4	-	-	-	-	-	-	-	-	-	-	-
TR0001P	71 5	99.0 60.0		59.0 71 5	-	- 71 5	59.0 71 5	71 5	-	- 71 2	- 68 5	-	-	-	-	-	-	-	-
YU0005P	90 4	88.8	-	. 1.5	-	. 1.5	. 1.5	, i.J	-	- 1.2		-	-	-	-	-	-	-	-
YU0008R	93.4	83.8		-		-	-		-	-	-			-	-	-		-	-

Code	mm	mm off	Cd	Pb	Cu	Zn	As	Cr	Ni	Fe	Co	v	Mn	AI	Hg
CZ0001R CZ0003R	99.7 99.7	-	92.2 97.9	97.8 97.9	-	-	-	-	97.8 97.9	-	-	-	-	-	-
DE0001R DE0002R DE0004R	85.5 100.0 85.8	-	97.1 95.0 99.7	97.1 95.0 99.7	97.1 94.4 99.7	97.1 95.0 99.7	97.1 95.0 99.7	96.8 95.0 99.7	97.1 94.6 99.7	97.1 95.0 99.7	97.1 95.0 99.7	97.1 95.0 99.7	97.1 95.0 99.7	-	99.8 - - 08.7
EE0009R EE0011R	100.0 100.0	-	100.0 90.5	100.0 90.5	100.0 90.5	100.0 90.5	100.0 90.5							-	
FI0009R FI0017R FI0053R FI0096R	100.0 100.0 100.0 96.7	- - -	100.0 100.0 100.0	100.0 100.0 100.0	100.0 100.0 100.0	100.0 100.0 100.0	100.0 100.0 100.0	100.0 100.0 100.0	100.0 100.0 100.0	100.0 100.0 100.0	-	100.0 100.0 100.0	100.0 100.0 100.0	-	- - 100.0
IE0001R IE0002R	100.0 100.0	-	100.0	100.0 76.9	100.0	100.0 76.9	100.0	100.0	100.0 76.9	-	-	100.0 76.9	100.0 76.9	100.0	100.0
IS0002R IS0090R	40.5 99.8	-	98.4	98.4 97.8	98.4 97.8	98.4 97.8	98.4 97.8	98.4 97.8	98.4 97.8	98.4 97.8	-	98.4 97.8	98.4 97.8	-	-
LT0015R	100.0	-	100.0	100.0	100.0	100.0	-	-	-	-	-	-	-	-	-
LV0010R LV0016R	100.0 100.0	-	100.0 100.0	100.0 100.0	100.0 100.0	100.0 100.0	-	-	-	-	-	-	-	-	-
NL0009R	81.1	-	57.5	57.5	57.5	57.5	57.5	57.5	57.5	57.5	57.5	57.5	-	-	-
NO0001R NO0039R NO0041R NO0047R NO0055R	100.0 100.0 94.8 98.1	-	99.9 100.0 99.9 99.4 99.9	99.9 100.0 99.9 99.4 99.9	- - 99.4 -	99.9 100.0 99.9 98.4 99.9	- - 99.4 -	- - 99.4 -	- - 99.4 -		- - 99.4 -				
NO0056R	100.0	-	97.7 99.2	99.9 99.2	- 99.2	99.9 99.2	- 99.2	- 99.2	99.2	-	- 99.2	- 99.2	-	-	100.0
PT0001R PT0003R PT0004R	-	100.0 100.0 100.0	28.0 36.9 40.0	28.0 36.9 40.0	28.0 36.9 40.0	28.0 36.9 40.0	-	-	28.0 36.9 40.0	-	-	-	28.0 36.9 40.0	-	-
SE0002R SE0005R SE0011R SE0051R SE0097R	96.7 100.0 96.7 100.0 98.9	-	93.9 - 100.0 100.0	- 100.0 - 100.0 100.0	93.9 - 100.0 100.0	- 93.9 - 100.0 100.0	- 100.0 - 100.0 100.0	- 100.0 - 100.0 100.0	- 100.0 - 100.0 100.0	-	- - - 100 0	- 100.0 - 100.0 100.0	- 93.9 - - 100.0	-	100.0 100.0 100.0
SK0002R SK0004R SK0005R SK0006R SK0007R	100.0 100.0 100.0 100.0 100.0	-	63.2 94.9 100.0 100.0 100.0	100.0 94.9 100.0 100.0 100.0		86.3 94.9 100.0 100.0 100.0				58.1 51.5 50.8 61.3 79.0			100.0 94.9 100.0 100.0 100.0	100.0 94.9 100.0 100.0 100.0	

Table 4:Completeness for heavy metals in precipitation, 2001.

Table 5:Completeness for heavy metals in air, 2001.

Code	Cd	Pb	Cu	Zn	As	Cr	Ni	Fe	Co	v	Mn	AI	Hg	reHg
AT0002R	16.7	16.7	-	-	-	-	-	-	-		-	-	-	-
AT0004R	16.7	15.3	-	-	-	-	-	-	-	-	-	-	-	-
AT0005R	16.7	16.7	-	-	-	-	-	-	-	-	-	-	-	-
CZ0001R	15.9	15.9	-	-	-	-	-	-	-	-	-	-	-	-
CZ0003R	16.4	16.4	-	-	-	-	-	-	-	-	-	-	-	-
DE0001R	87.7	84.9	87.7	-	84.9	-	84.9	-	-	-	87.7	-	-	-
DE0002R	87.7	87.7	90.1	-	87.7	-	90.1	87.7	-	-	90.1	-	-	-
DE0003R	87.7	87.7	65.5	-	-	-	85.8	-	-	-	87.7	-	-	-
DE0004R	90.1	90.1	87.4	-	-	-	87.4	90.1	-	-	90.1	-	-	-
DE0005R	90.1	87.7	87.7	-	-	-	90.1	-	-	-	87.7	-	-	-
DE0007R	87.7	87.7	87.7	-	85.2	-	87.7	-	-	-	87.7	-	-	-
DE0008R	90.1	90.1	87.7	-	-	-	87.4	-	-	-	90.1	-	-	-
DE0009R	84.9	87.4	87.7	-	87.7	-	90.1	-	-	-	87.4	-	-	-
DK0003R	96.2	96.2	96.2	96.2	96.2	96.2	96.2	96.2	-	-	96.2	-	-	-
DK0005R	93.7	93.7	93.7	93.7	-	93.7	93.7	93.7	-	-	-	-	-	-
DK0008R	95.9	95.9	95.9	95.9	95.9	95.9	95.9	95.9	-	-	95.9	-	-	-
ES0008R	10.1	10.1	9.0	-	-	-	-	-	-	-	-	-	-	-
ES0009R	10.1	10.1	9.0	-	-	-	-	-	-	-	-	-	-	-
FI0036R	98.3	98.3	98.3	98.3	98.3	98.3	98.3	98.3	-	98.3	98.3	-	-	-
FI0096R	-	-	-	-	-	-	-	-	-	-	-	-	26.0	-
IS0091R	100.0	100.0	100.0	99.3	100.0	100.0	100.0	100.0	-	99.3	100.0	100.0	100.0	-
LT0015R	99.7	99.7	99.7	99.7	-	-	-	-	-	-	-	-	-	-
LV0010R	100.0	100.0	100.0	100.0	-	-	91.8	-	-	-	-	-	-	-
LV0016R	94.2	94.2	94.2	94.2	-	-	86.3	-	-	-	-	-	-	-
NL0009R	49.6	49.6	-	49.6	49.6	-	-	-	-	-	-	-	-	-
NO0042G	27.2	27.2	27.2	27.2	27.2	27.2	27.2	-	27.2	27.2	27.2	-	90.2	3.8
NO0099R	96.1	96.1	96.1	96.1	96.1	96.1	96.1	-	96.1	96.1	-	-	5.5	-
SE0002R	-	-	-	-	-	-	-	-	-	-	-	-	28.8	-
SK0002R	73.2	73.2	73.2	73.2	-	71.5	71.5	-	-	-	73.2	-	-	-
SK0004R	80.8	80.8	80.8	80.0	-	80.8	80.8	-	-	-	80.8	-	-	-
SK0005R	81.6	81.6	81.6	81.6	-	80.0	81.6	-	-	-	81.6	-	-	-
SK0006R	74.2	74.2	74.2	74.2	-	72.6	72.6	-	-	-	74.2	-	-	-
SK0007R	81.6	81.6	81.6	76.7	-	80.0	78.4	-	-	-	80.0	-	-	-

Data capture for POPs and VOC is not included in this report, but this information is found in the different data reports (Aas and Hjellbrekke, 2003; Solberg, 2003).

3. Ion balances

The ion balance is a good test on consistency and errors in the analytical results, but will not necessarily reveal a contamination of the sample. This will depend on whether or not the contamination occurred before the analysis started. The ion balance will also fail to discover errors related to the precipitation sampling.

The ion balances for all precipitation samples from 2001 are presented in Annex 2, as a function of pH. Ion balances for samples with pH < 5 were, for many countries, better than 15–20%, indicating fairly good accuracy in the determination of the individual ions.

At some sites there were many samples with pH > 5. This is particularly the case in Mediterranean countries due to alkaline dust as clearly seen from the Portuguese and Spanish results, as well as at other continental sites and in the far north of Europe. It is an experience made that ion balances become markedly poorer with increasing pH above 5–6. Some countries seem to have systematic deficit of anions, i.e. in contrast to the large spread in the ion balances seen in the Mediterranean. This is seen at many sites, e.g. in Austria and Norway. In other countries, e.g. in Denmark and the Netherlands, the systematic anion deficit does not occur.

The reason for the poor ion balances at pH values above 5–6 is not yet fully understood. One contributing factor is certainly due to unmeasured ion species present in the sample, i.e. organic acids and bicarbonate. Biological degradation of some precipitation components may also contribute. The systematic deficit of anions at pH above 5–6 is a general problem, which also occurs in other networks in other parts of the world. The current situation with the very poor ion balances for samples with pH above 5 is highly unsatisfactory since we will only have limited information about the consistency of these results. Countries having weakly acidic samples as a larger fraction of their precipitation could supplement their current pH measurements with titration for determining weak acid concentrations, preferably as described in the Manual (EMEP, 1996). Only one site does this today, Netherlands (NL09).

In Annex 7 it is further discussed how CCC will flag data based on the ion balance test.

4. Accuracy, detection limits and precision

A request for quality assurance data for the main components was made earlier this year: measurement and laboratory lower detection limit and precision results from control samples, and detection limits and precision for monitors. The information collected on detection limits and precision is given in Annex 3. There are various ways of defining the measurement and laboratory precision and detection limit. The methods for calculating these data are defined in the EMEP Manual (EMEP, 1996). To quantify the precision in the measurements, parallel sampling is necessary and the precision should be given as M.MAD and CoV, relative standard deviation (RSD) is also an informative parameter. M.MAD expresses the spread of the data and equals the standard deviation if the population has a normal distribution. CoV expresses the relative spread of the data, and, similar to the M.MAD, approaches the relative standard deviation for a normal distributed population. Both parameters are non-parametric statistics, which make them particularly useful for measurements with spikes in the data. The definitions of M.MAD and CoV are (Sirois and Vet, 1994):

$$M.MAD = \frac{1}{0.6754} median \left(\left| e_i - median \left(e_i \right) \right| \right)$$

where e_i is the error in the two measurements

$$CoV \frac{M.MAD}{median(\overline{C})} *100\%$$

where \overline{C} is the average of the two corresponding results. If a reference method is used to evaluate the national/local measurements, the median of the reference measurements is used.

The detection limit is calculated using three times the standard deviation of the field blanks and given in the same unit as the measurement data. By using split samples and laboratory blank samples, laboratory precisions and detection limits can be assessed in a similar way.

5. Results from field comparisons

5.1 Main components in air

5.1.1 Introduction

Many Parties have applied measurement methods different from the recommended ones, and this has contributed to systematic concentration differences and a comparability problem in EMEP. Laboratory comparisons and, more recent, field studies have been organized in order to quantify systematic differences and errors and, as far as possible, to assess the measurement accuracies. Field comparisons have been carried out, and so far completed in United Kingdom, Ireland, Portugal, France, Germany, Poland, the Czech Republic, Croatia and Spain (Schaug et al., 1998; Aas et al., 1999, 2000, 2001, 2002). Field comparisons in the Netherlands, Slovenia and Switzerland are presented in this report.

The comparisons are carried out at an EMEP site using a set of reference instruments that corresponds to the specifications in the EMEP Manual. An inherent advantage of the reference methods is that the samples are stable and may be mailed from one country to another without any deterioration or change of concentrations. In order to make the comparison valid for a representative period, it was decided to distribute the comparison measurements over a whole year and for the air components about 100 measurements were considered necessary. For air measurements, the reference samples were collected two days every week, or in some cases during one week every month for practical reasons.

Large-scale field intercomparisons have additionally been organized in different campaigns with several countries sampling in parallel at one site. All the field intercomparisons performed so far in EMEP are summarized in Chapter 5.4.

Furthermore, results from field comparison done nationally are presented. Germany has measured SO_2 in parallel at DE3, DE7 and DE9 using the old TCM absorption technique and the filterpack method, which now is being used at most German sites. The same is the case for the Turkish EMEP site, Cubuk II where similar parallel measurements have been carried out. Moreover results from parallel sampling of SO_2 at Illmitz (AT02) in 2001 using filterpack and UV monitor will be presented.

5.1.2 Reference instrumentation

The EMEP manual recommends a filterpack method with an aerosol filter for collection of sulphate, and subsequent absorption of sulphur dioxide on a cellulose filter impregnated with KOH. This filterpack is also suitable for determining the sum of nitrate aerosol and gaseous nitric acid. Evaporation of ammonium nitrate collected on the aerosol filter during the sampling period will lead to nitric acid that is collected on the impregnated filter. The quantity of nitrate accumulated on the impregnated filter will therefore usually represent an overestimate of the airborne gaseous nitric acid.

For nitrogen dioxide, the recommended sampling method is conversion to nitrite, using sodium iodide as reducing agent, which is added to a glass sinter frit in a glass bulb. The methods are described in more detail in the EMEP Manual for Sampling and Chemical Analysis (EMEP, 1996).

5.1.3 Comparison at Dübendorf, Switzerland

A field intercomparison at a Swiss EMEP site turned out to be difficult to accomplish because these sites are not visited as frequent as necessary to run the reference methods. A comparison of SO_2 and NO_2 was therefore performed at EMPA in Dübendorf. This is not a background site fulfilling the EMEP siting criteria, but it is one way of testing the methods used by Switzerland. This is not an active site and measurement instruments were installed solely for this field comparison. The method for measuring SO_2 and NO_2 (TEI 43C TL) at the Swiss EMEP sites are similar to the one tested in Dübendorf, i.e. UV-fluorescence and chemiluminescence (Horiba APNA 360) monitors respectively. Zero and span checks were performed daily (automatic), and the instruments were calibrated every second week.

The results from this comparison are found in Figure 1, Figure 2 and Table 6.

Figure 1: Comparison of the co-located SO₂ measurements at Dübendorf.

Figure 2: Comparison of the co-located NO₂ measurements at Dübendorf.

Table 6:	Summary of results of co-located measurements at Dübendorf, in
	$\mu g/m^3$.

		SO ₂ -S							
	not corrected	corr. for NO	corr. for NO & H2O	NO ₂ -N					
Mean NILU	0.89	0.89	0.89	5.55					
Mean EMPA:	1.64	1.16	1.10	8.45					
Median NILU	0.68	0.68	0.68	4.90					
Median EMPA:	1.17	0.90	0.83	8.39					
Num pairs:	91	91	91	89					
Average diff:	-0.75	-0.26	-0.21	-2.90					
Median diff:	-0.50	-0.19	-0.13	-2.78					
M.MAD:	0.52	0.29	0.36	1.91					
CoV:	77 %	43 %	53 %	39 %					

The SO_2 monitor has interference with NO and H_2O . A correction for this has been done. As clearly seen in Figure 1, NO has large influence on the results.

The monitors show higher concentrations for both NO₂ and SO₂. The concentrations are relatively high compared to a typical EMEP site and there should not be any problems with e.g. too high detection limit. In addition, the concentrations are not too high giving problems with the absorption capacity. For NO₂, the bias may to some extent be explained by the non-specific NO₂ detection with molybdenum converters. At EMEP sites it is recommended to determine NO₂ specifically as i.e. for the Cranox system used at Rigi and Jungfraujoch. For SO₂, the bias can possibly be due to interference from also other species than NO and H₂O (which is emitted from cars). E.g. m-xylene has shown to give interferences. Neither of these interferences is expected to have large influence on an EMEP background site.

5.1.4 Comparison at Bilthoven, the Netherlands

A field intercomparison at a Dutch EMEP site turned out be equally difficult to accomplish since these sites are not visited as frequently as necessary to run the reference methods from CCC. A comparison of SO₂, SO₄²⁻, NO₂ and NO₃⁻ were therefore performed in Bilthoven where RIVM is situated. This is not a background site fulfilling the EMEP siting criteria, but it is one way of testing the methods in use by the Netherlands. The Dutch measurements of SO₂ and NO₂ are done using UV-fluorescence and chemiluminescence monitors respectively. The analysis of SO₄²⁻ and NO₃⁻ are done on PM₁₀ aerosol samples.

Figure 3: Comparison of the co-located SO₂ measurements at Bilthoven.

The regression between the two SO_2 measurements is acceptable when excluding the largest outliers. This gives a slope of 0.82 and not 0.69 as seen in Figure 3 for all data. The difference in the medians is about 15%, which is quite acceptable. The spread is somewhat higher, with a variation coefficient at 28%.

The comparison of the SO_4^{2-} measurements gives good results as seen in Figure 4. The difference in the average concentration is 16% and the spread, given as CoV, is 20%.

Figure 4: Comparison of the co-located SO_4^{2-} measurements at Bilthoven.

*Figure 5: Comparison of the co-located NO*₂ *measurements at Bilthoven.*

The NO_2 comparison went very well the five first months with almost 1:1 ratio between the two samplers; shown by red dots in the xy plot in Figure 5. During the next three months there was an overestimation by the monitor, which changed to underestimating the reference data the last four months. The over- and underestimations are equalizing each other and the average values are not much different from each other (Table 7). The spread and the average of the differences are large. The reason for the monitor behaviour is unclear, but there could have been a calibration problem in October 2001.

Figure 6: Comparison of the co-located NO_3^{2-} measurements at Bilthoven.

The correlation between the two series of NO_3^- aerosol concentrations is quite good as seen in Figure 6. The sum of nitrate and nitric acid from the impregnated filter in the reference is also included in the Figure. NO_3^- measurements on aerosol filters can be biased due to the volatile nature of NH_4NO_3 , and it is seen that some of the large differences between the Dutch and the reference method for NO_3^- occur on days with the highest concentrations of nitric acid on the impregnated filter.

Table 7:	Summary of results of co-located measurements at Bilthoven, in
	$\mu g/m^3$.

SO2-S	filterpack		monitor	SO4-S	filterpack		F
Mean ref:	1.35		1.57	Mean ref:	1.13		
Median ref:	1.25		1.41	Median ref:	1.08		
Num pairs:		89		Num pairs:		90	
Average of diff:		-0.22		Average of diff:		0.18	
Median of diff:		-0.19		Median of diff:		0.18	
M.MAD:		0.35		M.MAD:		0.22	
CoV:		28%		CoV:		20 %	
NO2-N	filterpack		monitor	NO3-N	filterpack		ł
Mean ref:	8.63		8.74	Mean ref:	1.14		
Median ref:	8.41		8.35	Median ref:	0.83		
Num pairs:		92		Num pairs:		90	
Average of diff:		-0.11		Average of diff:		0.14	
		0 45		Median of diff		0.11	
Median of diff:		-0.45		inoulan of an.			
Median of diff: M.MAD:		-0.45 3.53		M.MAD:		0.32	

5.1.5 Comparison at Iskrba, Slovenia

Slovenia has relatively recently started to measure main components in air using the reference methodology. A field comparison between the Slovenian filterpack sampler and a reference sampler from the CCC was organised from August 2001 to August 2002 in order to ensure that these measurements are running as intended. The results are found in Figure 7 to Figure 10 and in Table 8.

*Figure 7: Comparison of the co-located SO*₂ *measurements at Iskrba.*

The correlation between the two SO_2 measurements is good. There were two big outliers, 9th and 11th February, that are not included in the statistical calculations. The SO_4 comparison likewise gave satisfactory results as seen from Figure 8 and Table 8.

*Figure 8: Comparison of the co-located SO*₄ *measurements at Iskrba.*

*Figure 9: Comparison of the co-located sumNO*₃ measurements at Iskrba.

Figure 10: Comparison of the co-located sumNH_x measurements at Iskrba.

The comparison of sumNH_x and sumNO₃ gave CCC results that were much higher than the national in 2001 and in May–June in 2002, Figure 9. There has been a contamination at the CCC, this is seen from the field blanks for NO₃⁻ and NH₄⁺ these months. Consequently, the statistic evaluation of the comparison is based only on the months with normal field blank values.

502-5	NILU		Iskrba
Mean ref:	0.65		0.51
Median ref:	0.38		0.30
Num pairs:		92	
Average of diff:		0.14	
Median of diff:		0.11	
M.MAD:		0.09	
CoV:		24 %	
sum NH4-N*	NILU		Iskrba
sum NH4-N* Mean ref:	NILU 1.21		lskrba 0.96
sum NH4-N* Mean ref: Median ref:	NILU 1.21 1.07		lskrba 0.96 0.88
sum NH4-N* Mean ref: Median ref: Num pairs:	NILU 1.21 1.07	55	lskrba 0.96 0.88
sum NH4-N* Mean ref: Median ref: Num pairs: Average of diff:	NILU 1.21 1.07	55 0.25	lskrba 0.96 0.88
sum NH4-N* Mean ref: Median ref: Num pairs: Average of diff: Median of diff:	NILU 1.21 1.07	55 0.25 0.18	lskrba 0.96 0.88
sum NH4-N* Mean ref: Median ref: Num pairs: Average of diff: Median of diff: M.MAD:	NILU 1.21 1.07	55 0.25 0.18 0.28	lskrba 0.96 0.88

Table 8: Summary of results of co-located measurements at Iskrba, in $\mu g/m^3$.

SO4-S

Mean ref:

Median ref:

Num pairs:

M.MAD:

CoV:

Average of diff:

Median of diff:

sum NO3-N*	NILU		Iskrba
Mean ref:	0.23		0.20
Median ref:	0.20		0.13
Num pairs:		48	
Average of diff:		0.03	
Median of diff:		0.04	
M.MAD:		0.06	
CoV:		30 %	

NILU

1.04

0.72

86

0.19

0.15

0.12

15 %

* Only 7 month of the data is used

* Only 6 month of the data is used

5.2 Comparison at of SO₂ measurements (filterpack and UV fluorescence monitor) at Illmitz, Austria, 2001

Austria started the recommended filterpack method at Illmitz in 2001. Additionally they have a TEI 43BS UV-fluorescence monitor in parallel to fulfil their obligations to the EU directives, changed to TE43 CTL December 15^{th} . At the other Austrian sites they have monitors only, and this parallel sampling at AT02 is therefore very useful to document the performance of the Austrian SO₂ measurements. The SO₂ monitors have daily zero and span checks (automatic). Routine visits of the station are biweekly, calibration including linearity checks is minimum twice a year.

As seen in Figure 11 and Table 9 the correlation between the measurements is good. The averaging periods were eight hours different; the filterpack sampled from 08.00 to 08.00 and the UV-fluorescence measurements were averaged from 00.00 to 00.00. The slope is nevertheless very good, but there is a general underestimation of the concentrations by the monitor. The spread is somewhat high, but parts of this can be explained by the different averaging periods.

Iskrba

0.85

0.59

Figure 11: Comparison of the co-located SO₂ measurements at Illmitz.

Table 9:	Summary of results of co-located SO_2 measurements at $AT02$, i	in
	$\mu gS/m^3$.	

	Recommended filterpack		TEI 43BS
Mean:	1.86		1.50
Median	1.09		0.87
Num pairs:		354	
Average of diff:		0.36	
Median of diff:		0.24	
M.MAD:		0.46	
CoV:		42 %	

5.3 Comparison of SO₂ measurements (filterpack and TCM) in Germany and Turkey

Both Germany and Turkey have used the TCM absorption technique for measuring SO_2 in air. The German SO_2 data are among the longest SO_2 records in Europe and gives a valuable documentation of the regional changes in the concentrations of this component on the Continent; the extraction of reliable information from these data series is therefore most important.

There are two problems with the TCM data; firstly they have a detection limit that seems to reach $2-3 \ \mu g \ S/m^3$ with noise and random concentrations below the detection limit. Secondly the TCM absorbing solution is unstable during the warm season giving concentrations close to zero, e.g. as demonstrated by the Schauinsland field comparison in 1998 (Aas et al., 1999).

Both Germany and Turkey apply the recommended filterpack method at their EMEP sites today. In connection with the change of method both countries carried

out parallel measurements for one year, Germany at three sites, Schauinsland (DE3), Neuglobsow (DE07) and Zingst (DE9); and Turkey at Cubuk II.

The results are presented as time series in Figure 12–Figure 15, and in Table 10. All comparison results show that the TCM method underestimates the concentrations when compared with the filterpack results for complete years. The Schauinsland results in Figure 12 demonstrate the problems with the TCM method. The results from Neuglobsow and Zingst compare better with the filterpack results even at low concentrations.

*Figure 12: Comparison of the parallel SO*₂ *measurements at Schauinsland, DE03.*

Figure 13: Comparison of the parallel SO₂ measurements at Neuglobsow, DE07.

Figure 14: Comparison of the parallel SO₂ measurements at Zingst, DE09.

Figure 15: Comparison of the parallel SO₂ measurements at Cubuk II, TR01.

	C	DE3	[DE7	C	DE9		TR1
	all data	data > DL						
Mean filterpack:	0.46	0.56	0.80	0.91	0.75	0.75	0.98	1.33
Mean TCM:	0.13	0.27	0.52	0.63	0.68	0.68	0.46	0.74
Percent difference	72 %	52 %	35 %	31 %	9 %	9 %	53 %	44 %
Median filterpack:	0.33	0.37	0.50	0.65	0.52	0.52	0.51	0.93
Median TCM:	0.05	0.15	0.25	0.35	0.50	0.50	0.13	0.39
Percent difference	85 %	59 %	50 %	46 %	4 %	4 %	75 %	58 %
Num pairs:	299	108	341	281	357	357	101	60
Average of diff:	0.33	0.28	0.28	0.29	0.07	0.07	0.52	0.59
Median of diff:	0.25	0.20	0.22	0.22	0.05	0.05	0.32	0.36
M.MAD:	0.21	0.22	0.18	0.24	0.16	0.16	0.47	0.60
CoV:	63 %	61 %	36 %	36 %	31 %	31 %	93 %	65 %

Table 10: Summary of results of co-located SO_2 measurements at in Germany and Turkey, in $\mu gS/m^3$.

The problem using the TCM method is more severe in the summer, clearly seen at TR01.

The Langenbrügge field comparison (Nodop and Hanssen, 1986) organised during the winter 1984–1985 indicated that the TCM method compared very well with the filterpack methods under the concentration levels and outdoor temperatures at that time. The concentrations during this period were hardly below 2 μ g/m³. Winter data from periods when the SO₂ concentrations were higher than today could therefore be acceptable without corrections. Clean winter historical data sets could probably be extracted by use of time-series graphs and histograms. Summer data and data from sites with very low concentrations as at Schauinsland the recent years should probably not be used. Wallasch (Annex 5) has proposed a factor (1.46) to be applied on all historical German (TCM) SO₂ data.

5.4 Summary of the results from the field comparisons

Two large-scale field comparisons of SO_2 and SO_4 in air have been organized by EMEP, at Langenbrügge (DE2) in northern Germany in 1985 (Nodop and Hanssen, 1986) and at Vavihill (SE11) in southern Sweden in 1990 (Semb et al., 1991). One large intercomparison of NO₂ was held in Kleiner Feldberg in Germany in 1991 (Fähnrich et al., 1993). During the second half of the nineties a series of on-site comparisons of national measurements with reference instrumentation have been carried out in EMEP as described in the previous Chapters. Additional field comparisons organised by the Parties also give highly valuable documentation on the measurement data quality. The comparisons presented in this Chapter are used for flagging the air measurements in EMEP as described in Chapter 7.2.2.

Country:	DK	HU	DE	GB	FI	SE	FR
Method	KOHimp	TCM abs	TCM abs	H202 abs	H202 abs	H202 abs	H202 abs
Mean (ref):	11.93	11.59	11.72	11.87	12.43	11.59	16.52
Mean:	13.00	9.38	13.1	12.10	14.02	12.82	13.93
Median (ref):	5.80	5.80	5.90	6.00	5.50	5.80	10.50
Median:	7.90	5.60	8.00	7.20	8.10	5.90	8.20
Num pairs:	67	71	70	69	70	71	45
Average of diff:	-1.07	2.20	-1.38	-0.23	-1.58	-1.23	2.59
Median of diff:	-0.60	0.80	-1.05	-0.80	-1.60	0	1.70
median % err	-10 %	14 %	-18 %	-13 %	-29 %	0 %	16 %
M.MAD:	1.19	2.22	1.41	1.04	2.22	1.93	2.37
CoV:	20 %	38 %	24 %	17 %	40 %	33 %	23 %
slope:	1.03	1.38	1.01	0.88	1.04	1.17	1.11

Ref. method is NILU's measurements, outliers are not included

*Table 11: A summary of all the field comparisons of SO*₂ *measurements.*

National internal field intercomparions

1986

Ref. method is the filterpack sampler

Country:	NO		FI	Т	R	D	ЭЕ	AT
methods and	FP/FP	UV/FP	1993-2000	TCM/FI	P, 1997	TCM/F	P, 2000	UV/FP
year	1996	all data	data >DL	all data	data >DL	all data	data >DL	2001
Mean (ref):	0.47	0.84	0.99	0.98	1.33	0.65	0.76	1.86
Mean:	0.53	0.87	1.07	0.46	0.74	0.44	0.59	1.50
Median (ref):	0.33	0.37	0.40	0.51	0.93	0.44	0.52	1.09
Median:	0.38	0.40	0.45	0.13	0.39	0.25	0.40	0.87
Num pairs:	16	7210	6734	101	60	846	607	354
Average of diff:		-0.02	-0.08	0.52	0.59	0.22	0.18	0.36
Median of diff:		-0.04	-0.05	0.32	0.36	0.17	0.11	0.24
median % err		-11 %	-13 %	63 %	39 %	39 %	21 %	22 %
M.MAD:	0.04	0.13	0.12	0.47	0.60	0.22	0.22	0.46
CoV:	12 %	36 %	30 %	93 %	65 %	50 %	43 %	42 %
slope:		0.86	0.86	1.36	1.39	1.03	1.10	1.04

Langenbrügge,

Table 11, cont.

Vavihill, 1991

Ref. method is the median of all the impr. filter samplers

Country	AT	CZ	CZ,2	DE	ES	GB	IR	IT	NO	NO,2	SE	SE,2	SF	SF,2	SU
method	H202 abs	Impr filter	Impr filter	TCM abs	H202 abs	H202 abs	Impr filter	denuder	Impr filter	Impr filter	H202 abs	Impr filter	H202 abs	Impr filter	Impr filter
Mean (ref):	3.23	3.26	3.26	3.29	3.19	3.13	3.26	3.91	3.13	3.13	3.13	3.26	3.17	3.32	3.31
Mean:	4.59	2.85	2.93	3.84	4.13	4.35	3.65	4.59	3.14	3.26	5.12	3.38	4.38	3.70	2.98
Median (ref):	2.08	2.07	2.07	2.08	1.77	2.07	2.07	2.72	2.07	2.07	2.07	2.07	2.07	2.08	2.05
Median:	3.08	1.89	1.87	2.53	2.05	3.25	2.48	3.15	2.10	2.27	3.85	2.31	3.38	2.35	1.75
Num pairs:	49	42	42	47	38	51	42	33	51	51	51	42	50	41	40
Average of diff:	-1.36	0.41	0.33	-0.55	-0.94	-1.22	-0.39	-0.68	-0.01	-0.13	-1.99	-0.13	-1.21	-0.38	0.32
Median of diff:	-1.01	0.24	0.23	-0.4	-0.74	-1.03	-0.41	-0.49	-0.07	-0.05	-1.57	-0.08	-1.11	-0.31	0.23
median % err	-49 %	12 %	11 %	-19 %	-42 %	-50 %	-20 %	-18 %	-3 %	-2 %	-76 %	-4 %	-54 %	-15 %	11 %
M.MAD:	0.56	0.22	0.21	1.05	0.76	0.76	0.44	0.44	0.22	0.22	0.95	0.35	0.5	0.31	0.62
CoV:	27 %	11 %	10 %	51 %	43 %	37 %	21 %	16 %	11 %	11 %	46 %	17 %	24 %	15 %	30 %
slope:	0.76	1.12	1.05	0.66	0.84	0.82	0.91	0.89	0.93	0.92	0.72	0.94	0.78	0.93	1.14

Co-located sampling, reference method (impr. filters) compared with national method at the EMEP site

Site	GB2	IE2	PL5	PT4	DE3	DE3	FR8	CZ3	HR04	ES12	ES12	NL	SI08	CH
method at site	H202 abs	Impr filter	Impr filter	H202 abs	Impr filter	TCM abs	H202 abs	Impr filter	TCM abs	H202 abs	monitor	monitor	Impr filter	monitor
year	1997	1997	1998	1997	1998	1998	1998	1999	2000	2000	2000	2001	2001	2002
Mean (ref):	0.62	0.60	1.39	1.79	0.54	0.54	0.74	1.57	0.72	0.45	0.45	1.35	0.65	0.89
Mean:	0.86	0.57	1.22	2.69	0.64	0.21	0.81	2.21	0.15	0.45	0.52	1.57	0.51	1.10
Median (ref):	0.31	0.22	0.68	0.98	0.36	0.36	0.44	0.95	0.50	0.40	0.40	1.25	0.38	0.68
Median:	0.43	0.29	0.70	1.60	0.38	0.05	0.57	1.56	-	0.25	0.45	1.41	0.30	0.83
Num pairs:	63	87	95	101	93	88	94	79	77	86	85	89	92	91
Average of diff:	-0.24	0.03	0.16	-0.90	-0.1	0.33	-0.07	-0.63	0.57	0	-0.08	-0.22	0.14	-0.21
Median of diff:	-0.12	-0.02	-0.03	-0.54	-0.08	0.27	-0.07	-0.51	0.36	0.03	-0.07	-0.19	0.11	-0.13
median % err	-39 %	-9 %	-4 %	-55 %	-22 %	75 %	-16 %	-54 %	72 %	8 %	-18 %	-15 %	29 %	-19 %
M.MAD:	0.10	0.11	0.16	0.96	0.09	0.30	0.23	0.46	0.52	0.27	0.25	0.35	0.09	0.36
CoV:	32 %	49 %	23 %	98 %	25 %	84 %	52 %	48 %	104 %	67 %	63 %	28 %	24 %	53 %
slope:	0.48	1.04	1.31	0.66	0.86	0.98	0.85	0.14	-	0.07	0.62	0.69	0.69	0.69
slope without outliers	0.90	1.04	1.14	0.72	0.86	0.14	0.85	0.14	-	-	0.64	0.82	1.12	

Table 12: A summary of all the field comparisons of SO_4^{2-} aerosol measurements.

Langenbrügge, 1986	Ref	f method is NIL	Us measurem.	ents using IC		
country:	DK	HU	DE	SE	FI	GB
lab method	Sulfonazo	IDA	XRF	XRF	XRF	XRF
Mean (ref):	3.32	3.23	3.06	3.23	3.24	3.29
Mean:	3.79	2.11	2.77	3.53	3.53	3.31
Median (ref):	2.10	2.00	2.05	2.00	2.00	2.10
Median:	2.40	1.40	1.70	1.60	1.80	2.10
Num pairs:	71	75	72	75	74	73
Average of diff:	-0.47	1.12	0.29	-0.31	-0.28	-0.02
Median of diff:	-0.30	0.60	0.40	0.40	0	0
median % err	-14 %	30 %	20 %	20 %		
M.MAD:	0.44	0.89	0.44	0.74	0.44	0.44
CoV:	21 %	44 %	22 %	37 %	22 %	21 %
slope:	0.86	1.70	1.00	0.62	0.73	1.06

Vavihill, 1991

Average concentration is used as reference

country:	AT	CS	CS,2	DE	ES	GB	IR	NO	NO, 2	SE	SF	SF, 2	SU
Mean (ref):	1.13	1.15	1.15	1.12	1.15	1.11	1.15	1.15	1.15	1.15	1.18	1.15	1.14
Mean:	0.88	1.24	1.15	1.05	1.08	1.2	1.01	1.17	1.22	1.2	1.14	1.31	1.42
Median (ref):	0.91	0.99	0.99	0.95	0.99	0.91	0.99	0.97	0.97	0.99	0.99	0.99	0.96
Median:	0.76	1.06	0.99	0.87	0.97	1.07	0.76	0.96	1.06	1.04	0.93	1.15	1.27
Num pairs:	57	42	42	47	42	59	42	51	51	42	48	42	40
Average of diff:	0.24	-0.09	0	0.07	0.07	-0.09	0.14	-0.02	-0.08	-0.05	0.04	-0.16	-0.28
Median of diff:	0.18	-0.06	0	0.08	-0.08	-0.08	0.14	0	-0.08	-0.03	0.03	-0.12	-0.24
median % err	20 %	-6 %	0 %	8 %	-8 %	-9 %	14 %	0 %	-8 %	-3 %	3 %	-12 %	-25 %
M.MAD:	0.16	0.08	0.09	0.13	0.19	0.15	0.2	0.13	0.15	0.11	0.06	0.14	0.16
CoV:	18 %	8 %	9 %	14 %	19 %	16 %	20 %	14 %	15 %	11 %	6 %	14 %	17 %
slope:	0.94	0.91	0.93	0.86	0.67	0.99	0.75	0.85	0.92	0.90	0.86	0.87	0.85

Table 12, cont.

Co-located sampling

Site	GB2	IE2	PT4	DE3	PL5	FR8	CZ3	ES12	NL	SI08
year	1997	1997	1997	1998	1998	1998	1999	2000	2001	2001
Mean (ref):	0.63	0.86	1.56	0.61	1.02	0.84	1.09	0.71	1.13	1.04
Mean:	0.65	0.78	1.77	0.66	1.24	0.6	1.24	0.77	0.95	0.85
Median (ref):	0.44	0.58	1	0.47	0.78	0.69	0.81	0.61	1.08	0.72
Median:	0.43	0.57	1.07	0.53	1.02	0.46	1	0.6	0.85	0.59
Num pairs:	63	87	100	93	94	90	39	84	90	86
Average of diff:	-0.01	0.08	-0.21	-0.05	-0.22	0.24	-0.16	-0.06	0.18	0.19
Median of diff:	-0.01	0.05	-0.06	-0.04	-0.23	0.22	-0.23	-0.05	0.18	0.15
median % err	-2 %	9 %	-6 %	-9 %	-29 %	32 %	-28 %	-8 %	17 %	21 %
M.MAD:	0.07	0.09	0.51	0.1	0.37	0.25	0.25	0.06	0.22	0.12
CoV:	17 %	16 %	51 %	20 %	48 %	36 %	31 %	10 %	20 %	17 %
slope:	0.97	1.13	0.72	1.02	0.75	1.09	1.09	0.78	1.08	1.12

Table 13: A summary of all the field comparisons of NO₂ measurements.

Kleiner Feldberg 1991

country	CS (SK)	CS (CZ)	DE (DDR)	DE (FRD)	DE (DDR)	DE (FRD)	DK	HU	IT	NO	NO	PL	RO
Method	bubbler (NEDA)	impr filter	saltzman	saltzman	monitor	monitor	impr glas	bubbler (TEA)	denuder	bubbler (TGS)	impr glas	bubbler (TGS)	impr glas
Mean (ref):	3.21	3.09	3.10	2.96	3.25	3.20	3.16	3.20	3.13	3.23	3.26	3.16	3.29
Mean:	2.79	2.71	2.77	2.64	2.75	2.71	2.75	2.79	2.75	2.79	3.15	2.77	3.15
Median (ref):	2.45	3.67	3.07	3.23	3.47	5.55	2.98	2.54	2.15	4.65	3.25	2.97	2.42
Median:	2.66	3.44	2.85	2.91	3.51	4.80	2.74	2.57	2.07	4.45	3.04	2.99	2.39
Num pairs:	66	57	72	50	46	35	74	70	70	79	78	76	70
Average of diff:	0.76	-0.59	0.03	-0.27	-0.21	-2.35	0.18	0.66	0.98	-1.42	0.01	0.19	0.87
Median of diff:	0.75	-0.69	-0.04	-0.16	-0.03	-2.03	0.07	0.56	0.76	-1.23	0	0.01	0.69
median % err	31 %	-19 %	-1 %	-5 %	-1 %	-37 %	2 %	22 %	35 %	-26 %	0 %	0 %	29 %
M.MAD:	1.28	1.16	0.30	0.61	1.07	1.66	0.10	1.08	0.50	0.76	0.06	0.72	1.01
CoV:	46 %	43 %	11 %	23 %	39 %	61 %	4 %	39 %	18 %	27 %	2 %	26 %	32 %
slope:	0.66	0.95	1.18	0.68	0.85	0.42	1.09	0.85	1.31	0.77	0.91	1.25	1.19

Kleiner Feldberg cont.

country	SE	SE	SU	YU	AT	AT	СН	CH	NL	UK	UK	UK
Method	impr glas	DOAS	impr glas	bubbler (TGS)	mon (Horiba)	monitor	mon (Cranox)	monitor	monitor	monitor	monitor	luminol
Mean (ref):	3.19	2.59	3.18	3.06	3.21	3.21	2.96	3.00	3.06	3.19	3.19	3.08
Mean:	2.75	2.53	2.79	2.75	2.79	2.79	2.73	2.97	2.73	2.95	2.95	2.68
Median (ref):	3.40	3.39	3.56	3.86	4.77	4.87	3.12	4.45	4.62	4.15	4.06	3.38
Median:	3.37	3.30	3.47	3.93	4.58	4.73	3.16	4.48	4.23	3.80	3.63	3.14
Num pairs:	74	52	82	64	78	78	48	56	68	80	80	66
Average of diff:	-0.21	-0.80	-0.38	-0.80	-1.57	-1.66	-0.16	-1.46	-1.56	-0.96	-0.87	-0.31
Median of diff:	-0.07	-0.67	-0.34	-1.16	-1.41	-1.55	-0.12	-1.51	-1.70	-0.84	-0.73	-0.42
median % err	-2 %	-20 %	-10 %	-30 %	-30 %	-32 %	-4 %	-34 %	-37 %	-20 %	-18 %	-12 %
M.MAD:	0.10	0.46	0.19	0.87	0.65	0.70	0.49	1.16	1.51	1.18	1.36	0.59
CoV:	4 %	18 %	7 %	32 %	23 %	25 %	18 %	39 %	55 %	40 %	46 %	22 %
slope:	0.89	0.69	0.94	0.52	0.94	0.83	0.76	0.73	0.64	0.68	0.69	1.26

Table 13, cont.

Co-located sampling

site	CZ3	DE3	ES12	ES12	IE2	PL5	PT4	NL	CH
method	impr filter	satzman	abs (TEA)	monitor	bubbler (TGS)	bubbler (TGS)	monitor	monitor	monitor
Mean (ref):	1.61	1.00	0.42	0.42	0.53	0.89	0.99	8.63	5.55
Mean:	2.50	1.13	2.48	0.88	0.64	0.94	1.04	8.74	4.90
Median (ref):	1.39	0.77	0.40	0.40	0.36	0.63	0.80	8.41	8.45
Median:	2.22	1.00	1.00	0.84	0.40	0.58	0.81	8.35	8.39
Num pairs:	75	83	95	93	74	87	94	92	89
Average of diff:	-0.89	-0.13	-2.06	-0.45	-0.12	-0.05	-0.05	-0.11	-2.90
Median of diff:	-0.69	-0.20	-0.65	-0.41	-0.11	0.01	0.02	-0.45	-2.78
median % err	-50 %	-26 %	-163 %	-103 %	-31 %	2 %	3 %	-5 %	-33 %
M.MAD:	0.74	0.41	1.34	0.22	0.15	0.32	0.36	3.53	1.91
CoV:	53 %	53 %	339 %	54 %	42 %	52 %	45 %	42 %	39 %
slope:	0.29	1.14	0.03	0.74	0.59	0.61	0.64	0.74 (1.06)	0.68

6. Results from laboratory comparisons

6.1 Main components

The twentieth intercomparison of main component in precipitation and air is reported separately (Uggerud et al., 2003). Table 14 gives a summary of the precipitation results. The CEC laboratory at Ispra did not participate in the 20th laboratory intercomparison. Appendix 4 is a summary of all previous 19 laboratory comparison results used for flagging the EMEP data (Chapter 7).

Table 14:Results from the 20th laboratory inter-calibration of precipitation;
absolute value of the average percent error.
'pH diff' is the average deviation in pH unit from expected value.

Lab \ component	SO4-S	NO3-N	NH4-N	Mg	Na	CI	Ca	K	Cond.	pH diff	pH (H+)
1 AT	3.7	2.0	3.8	8.6	8.0	7.5	9.7	23.5	1.8	0.03	6.9
3 CS	0.9	2.6	18.1	1.4	3.3	6.0	1.7	2.0	2.5	0.01	1.9
4 DK	3.7	3.2	3.5	11.0	8.7	3.6	1.8	45.9	4.6	0.03	7.4
5 FI	1.7	1.9	3.3	2.3	0.9	1.4	8.3	1.4	0.5	0.03	6.4
6 FR	2.7	3.8	0.2	8.9	0.9	5.0	3.7	6.0	3.9	0.01	2.1
7 DE(Leip.)	4.9	1.4	1.8	13.0	0.3	3.5	6.5	1.4	11.5	0.03	5.8
8 DE(Schau.)	0.2	2.3	3.4	1.0	1.1	2.0	2.5	1.6	2.7	0.05	10.5
10 HU	2.8	0.5	5.2	2.5	16.9	24.0	10.9	7.5	0.6	0.04	9.4
11 IS	1.5	3.0		4.4		21.5	5.4	34.3	4.5	0.08	17.0
12 IE (MET)	0.3	0.5	4.0	1.2	1.1	1.5	5.6	5.3	4.4	0.01	2.5
13 IT-CNR	1.7	0.8	2.1	4.2	49.0	0.8	6.0	1.4	2.6	0.03	6.9
14 NL	11.0	0.8	1.7	7.1	8.1	2.8	7.7	3.9	4.4	0.10	19.8
15 NO	1.3	1.2	2.9	5.7	1.3	3.0	6.4	2.1	3.4	0.05	10.6
16 PL	1.6	3.0	4.8	4.9	1.8	2.7	1.3	4.4	1.4	0.01	3.3
17 PT	6.1	0.7	14.7	2.5	22.9	69.2	20.2		2.6	0.13	20.2
18 RO			15.0			10.7			5.2	0.11	29.3
19 ES	1.3	1.5	19.7	0.4	4.7	50.8	1.5	1.5	0.5	0.10	19.8
20 SE	0.3	1.0	2.6	13.2	2.7	4.3	4.4	12.6	11.1	0.09	18.4
21 CH	4.0	0.4	1.8	0.5	1.6	1.0	3.4	6.4	2.1	0.04	8.0
22 RU	10.5	5.4	4.8	7.2	26.9	29.5	15.3	16.0	5.5	0.06	13.0
23 GB	0.5	3.2	4.6	3.3	11.3	3.2	2.8	8.1	13.0	0.02	4.9
24 YU	27.0	31.5		31.5	3.2	31.9	36.1	1.8	35.5	0.07	14.1
26 CA	1.1	1.5	2.0	0.7	0.6	0.9	0.8	2.5		0.05	10.6
27 US-I	2.0	1.2	5.8	2.2	1.0	0.9	3.4	1.9	1.4	0.05	11.6
30 IT(ISP)											
31 SK	1.0	1.6	3.5	0.8	3.0	5.1	3.8	2.3	1.0	0.01	2.3
32 LT	8.2	1.1	5.0		11.1	8.3	40.2	4.3	2.6	0.05	11.6
33 LV	2.6	1.6	8.2	0.8	0.8	3.3	1.4	3.1	1.6	0.05	11.1
34 TR	0.5	3.4	3.1	1.8	7.0	5.5	6.7	17.6	3.3	0.04	9.6
35 CR	4.1	3.2	2.2	0.6	0.8	1.3	1.7	2.2	2.6		15.6
36 SI	2.3	0.8	3.2	3.2	1.7	2.0	0.9	2.5	6.3	0.05	10.5
37 IE (ESB)	2.2	1.8	11.3	25.7	2.2	10.1	16.0	22.7	3.8	0.14	39.1
38 EE	9.2	6.8	3.5	20.1	10.1	7.4	6.1	12.8	53.4	0.07	14.5
39 PL (Env.)	5.6	3.2	12.2	1.0	1.3	10.3	1.6	1.3	8.1	0.07	14.1
40 MK		55.1	79.2	9.0	8.2		8.9	25.6	32.1		
		<5%		5-10%			10-20%	6		>20%	
The results in Table 14 are mostly good, except for some elements where there is room for improvements, for potassium and chloride particularly. Furthermore, pH is a difficult parameter and only a few laboratories are within 5 per cent error, however, the data quality objectives (DQO) for pH is 0.1 unit (Annex 1). The colour limits for pH in Table 14 is given at 0.05, 0.1 and 0.2 average pH units difference from expected value. As seen from the Table, most laboratories are within the DQO.

Table 15 gives a corresponding overview of the result for the main air components. The results are quite acceptable, even though some components need improvements at a few laboratories.

Table 15: Results from the 20^{th} laboratory intercalibration of main componentsin air; the absolute value of the average percent error.

6.2 Heavy metals

The results from the analytical comparison of heavy metals in precipitation are presented in a separate report (Uggerud and Skjelmoen, 2003), but a summary of the main findings is found in Table 16. The results are divided in high and low concentration samples because the performance may vary with concentrations. In general the results are best for the high concentration samples. The DQO differentiate between high and low concentrations (Annex 1); the accuracy in the laboratory should be better than 15% and 25% for high and low concentrations respectively.

Most of the results are within the DQO, i.e. blue and green for high concentrations and blue, green and orange for low concentrations (Table 16). Some of the laboratories need, as seen, to improve their routines.

Table 16:	Results from the laboratory intercalibration of heavy metals in
	precipitation 2002; average percent absolute error in high and low
	concentrations samples.

	C	Cr	1	Ni	C	u	Z	'n	4	s	C	d	F	°b
Lab (comp	low	high	low	high	low	high	low	high	low	high	low	high	low	high
1 AT	8	2	5	4	1	4	4	7		5	5	4	3	2
3 CS	10	5	25	8	10	4	1	4	3	2	17	3		3
5 FI	20	9	14	9	7	4	5	4	19	15	7	8	7	7
6 FR		5		7	3	2	21	4		24		1	13	5
7 DE (Leip.)	1	5	1	0.4	4	3	4	3	20	9	3	1	3	2
8 DE (Schau.)	3	1	5	1	2	1	10	6	4	4	6	2	2	0.4
14 NL	25	2		3	9	3		4	5	1	3	2	7	5
15 NO	2	5	1	4		1	2		7	3	9	7	2	4
16 PL	15			3	13	3	31	5						15
23 GB	4	26	7	3	9	3	11	8	3	3	6	5	6	7
31 SK	1	1	22	3	4	1		2	11	4	43	1	2	1
32 LT	4	7	40	1	13	2	6	1	11	31	32	13	7	4
33 LV	23	14	15	6	9	13	4	4	20	11	2	3	11	2
34 TR	24		23	20	9	10	48	6			8	3	10	7
38 EE		1	143	12	7	5		13		40	13	12		2
39 PL Env.	15	2		7	18	15	14	4			5	13		4
		<5%			5-15%	6		15-25	%		>2	5%		

6.3 Laboratory comparison of POPs

An EMEP POP laboratory comparison with standards and extracts of real air samples of PAH and chlororganic compounds was organised during 2000 to 2002. A draft report of the results will be sent to the participants during the autumn 2003. A small work meeting involving the analytical chemists that returned results will take place at NILU in November this year.

7. New flags

7.1 Introduction

The EMEP network consists of a co-operation between a large number of participating laboratories and the data quality of the network is complex and varies from one national data set to the next. For the dataset 1996-1999 CCC classified the main components into four different quality groups using information from laboratory and field comparisons as well as ion balance plots, data completeness and information on detection limits. This system has now been revised and the EMEP data series will be given quality flags, mainly based on results from laboratory and field comparisons, see Chapter 7.2.

The participants may flag their data in the NASA/Ames files they use today to report data to the CCC that has a corresponding possibility to flag the data. These data flags are pasted to single measurements or sometimes to all data from a

sample. The data flags may, e.g. be found on the CCC homepage. The CCC has attempted to add more substance to the flagging based on the ion balance taking into account high pH and/or low ionic strength, in Chapter 7.3.

7.2 Quality (DQ) flags

The DQ flag has been divided in two two-digit numbers, the leftmost two digits describing the performance in field comparisons and the two rightmost being based on the laboratory comparisons. The two-digit flags are furthermore defined by letting the first digit represent an estimate of the systematic error and the second digit the random error. Most of the SO₂ and NO₂ in air and SO₄ in aerosols data have been given a four-digit DQ flag. The rest of the air data have not been assigned any flag due to few field- and laboratory comparisons for these components. For precipitation data there has been very few field comparisons and therefore only two flags representing the performance in the laboratory comparisons are given.

It should be understood that the field comparisons have been far less both in number and in length with respect to different meteorological situations than desirable, and that the DQ flag cannot be expected to give a precise estimate of the quality. The flags will give a data user a quick overview of the expected errors in a data set and hopefully also give the user reasonable estimates of systematic deviations from a reference and of random errors in the data.

The DQ flag-codes applied for the performance in the laboratory comparisons and in field comparisons are found in Table 17 and Table 18, respectively. The data series flagged with any of the red flags will be classified as invalid data. The rest of the data are classified as valid data although those marked with a green colour is by CCC considered as the most accurate data in the EMEP database.

7.2.1 Flags based on laboratory comparison

The EMEP laboratory intercomparisons started in 1977 and have been performed annually since then with a few exceptions, and are a very valuable basis for estimation of the uncertainty in the EMEP data. It should be kept in mind that test samples usually will be treated differently than the routine samples in the laboratories, and that the laboratory comparison results therefore could reflect a best, rather than the typical, data quality.

The systematic and random errors are calculated using a triangular distribution (Eurochem, 2000). The theory is described in Annex 6.

	M.MAD	≤ 0.25 µg S/m³		≤ 0.50 µg S/m ³		> 0.50 µg S/m ³
	CoV		[0, 25 %]		< 25%, 50 %]	and < 50%, → >
	< 1.30, → >	60	61	62	63	64
Regression slope (a) Ref = a ^x Lab	< 1.20, 1.30]	40	41	42	43	44
	< 1.10, 1.20]	20	21	22	23	24
	[0.90, 1.10]	00	01	02	03	04
	[0.80, 0.90 >	10	11	12	13	14
	[0.70, 0.80 >	30	31	32	33	34
	< ←, 0.70 >	50	51	52	53	54

Table 17: Criteria used for classification of data quality based on field comparison results.

Table 18: Criteria used for classification of data quality based on laboratory comparison results.

	2RSD %	<0, 1*DQO]	<1*DQO - 2*DQO]	<2*DQO - 4*DQO]	<4*DQO,
	< ←, -40 >	80	81	82	83
	[-40, -20 >	60	61	62	63
	[-20, -10 >	40	41	42	43
	[-10, -5 >	20	21	22	23
RB %	[-5, +5]	00	01	02	03
	< 5, 10]	10	11	12	13
	< 10, 20]	30	31	32	33
	< 20, 40]	50	51	52	53
	< 40, -→ >	70	71	72	73

A summary of the field comparisons is given in Chapter 5.4. Several countries have never participated in field comparisons, and some countries have changed their measurement method since they took part. The comparisons carried out so far are therefore far from sufficient to express the comparability of all measurements since 1978. There are probably many comparisons performed outside EMEP, and if this information is made available, further updates of the flags will be done.

The results obtained in one comparison are used to flag data for all the years this method has been in use at the site. A poor performance in a field comparison can therefore influence the flagging for many years of data. If the data quality is determined to a large extent by the sampling method then this seems to be an acceptable approach. If on the other hand the sampling is fairly simple and the laboratory work determines most of the overall measurement quality, then the performance in the annual laboratory comparisons will more important than the results from a field comparison. The present DQ flags and their use should therefore be further evaluated and discussed with the participants.

The random errors are calculated using the modified median absolute difference (M.MAD) and the coefficient of variation (CoV), defined in Chapter 4. The systematic errors are estimated using the regression slope between the reference and the national samples, i.e. the product of national mean values and the slopes should improve the comparability of the means.

7.3 Ion balance flags

The ion balance (IB) gives an indication of precipitation data quality since the concentrations of all negatively charged ions in a sample necessarily will have to equal the sum of the positively charged ions. When the concentrations of all major ions in a precipitation sample have been measured, a poor IB <u>may</u> therefore indicate a poor data quality, and the sample results are proposed flagged as described below.

This proposal aims at flagging data that are considered to have a quality less good than could be expected from EMEP's Data Quality Objectives (DQO). The flagged data are divided into two groups; data that are considered to have a quality sufficiently high to be useful for EMEP and therefore are considered valid and should be used, and secondly data that are considered invalid. The criteria are summarised in Figure 16.

A good IB is not a guarantee for a high data quality. It is important to bear in mind that even though a general good IB indicates adequate sample handling and a high analytical chemical skill in the laboratory, other factors may reduce the data applicability for EMEP and the overall data quality; e.g. local sources or sampling problems. Even a sample contamination will not necessarily be detected through an ion balance calculation, i.e. when the contamination takes place before the analyses have been started.

Figure 16: Criteria when the sum of ions $IS \ge 100$ ueq/L is based on the ion balance in per cent. Criteria when the sum of ions IS < 100 ueq/L is based on the difference between cation and anion concentrations in ueq/L.

The flags are suggested linked to each result from a specific precipitation sample. Other information about the sample results may, however, override the IB flagging, and validate some of the results.

The complete description of the ion balance flags is given in Annex 7.

8. Audits

8.1 Introduction

Audit is not being done regularly from CCC, but will be done when needed. It is recommended regular audits at all EMEP sites, at least as an internal control every year, but also with visitors from e.g. neighbouring countries. Forms to be used for auditing main components in air and precipitation, and ozone can be downloaded from EMEP's homepage, <u>http://www.nilu.no/projects/ccc/qa/index.htm</u>. It is recommended that all external auditing are reported to CCC.

9. References

- EMEP (1996) Manual for sampling and chemical analysis. Revised Nov. 2001. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 1/95). URL: http://www.nilu.no/projects/ccc/manual/index.html.
- Eurachem (2000) Quantifying uncertainty in analytical measurements. 2nd edition. URL: <u>http://www.eurachem.ul.pt/guides/QUAM2000-1.pdf</u>.

- Fähnrich, B., Hanssen, J.E. and Nodop, K. (1993) Comparison of measuring methods for nitrogen dioxide in ambient air. Kleiner Feldberg, Federal Republic of Germany 21st April to 31st May 1991. Lillestrøm, Norwegian Institute for Air Research (EMEP/CCC-Report 3/93).
- Hjellbrekke, A.-G. (2003) Data report 2001. Acidifying and eutrophying compounds. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 3/2003).
- Nodop, K. and Hanssen, J.E. (1986) Field intercomparison of measuring methods for sulphur dioxide and particulate sulphate in ambient air. Langenbrügge, Federal Republic of Germany, 7th November 1985 to 24th January 1986. Lillestrøm, Norwegian Institute for Air Research (EMEP/CCC-Report 2/86).
- Schaug, J., Semb, A. and Hjellbrekke, A.-G. (1998) Data quality 1996, quality assurance, and field comparisons. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 6/98).
- Schaug, J., Semb, A., Hjellbrekke, A.-G., Hanssen, J.E. and Pedersen, A. (1997) Data quality and quality assurance report. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 8/97).
- Semb, A., Andreasson, K., Hanssen, J.E., Lövblad, G. and Tykesson, A. (1991) Vavihill. Field intercomparison of samplers for sulphur dioxide and sulphate in air. Lillestrøm, Norwegian Institute for Air Research (EMEP/CCC-Report 4/91).
- Sirois, A. and Vet, R.J. (1994) Estimation of the precision of precipitation chemistry measurements in the Canadian air and precipitation monitoring network (CAPMON). In: *EMEP Workshop on the Accuracy of Measurements*. *Passau, 1993*, ed. by T. Berg and J. Schaug. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 2/94). pp. 67-85.
- Solberg, S. (2003) VOC measurements 2001. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 2/2003).
- Uggerud, H.T., Hanssen, J. E., Schaug, J. and Skjelmoen, J.E. (2003) The twentieth intercomparison of analytical methods within EMEP. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 8/2003).
- Uggerud, H. T. and Skjelmoen, J.E. (2003) Analytical intercomparison of heavy metals in precipitation, 2002. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 7/2003).
- Aas, W. and Hjellbrekke, A.-G. (2003) Heavy metals and POP measurements, 2001. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 1/2003).
- Aas, W., Hjellbrekke, A.-G., Manø, S., Schaug, J., Solberg, S. Uggerud, H.Th. (2002) Data quality 2000, quality assurance, and field comparisons. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 3/2002).

- Aas, W., Hjellbrekke, A.-G. and Schaug, J. (2000) Data quality 1998, quality assurance, and field comparisons. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 6/2000).
- Aas, W., Hjellbrekke, A.-G., Schaug, J. and Solberg, S. (2001) Data quality 1999, quality assurance, and field comparisons. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 6/2001).
- Aas, W., Hjellbrekke, A.-G., Semb, A. and Schaug, J. (1999) Data quality 1997, quality assurance, and field comparisons. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 6/99).

10. List of participating institutions and the national quality assurance managers (NQAM)

Country	Institute	NQAM	Email address
Austria	Umweltbundesamt	Eduard Frank	frank@ubavie.gv.at
Croatia	Meteorological and Hydrological Service of Croatia	Sonja Vidic	vidic@cirus.dhz.hr
The Czech Republic	Czech Hydrometerological Institute	Nadezda Melichova	melichova@chmi.cz
Denmark	National Environmental Research Institute	Lone Grundahl	lg@dmu.dk
Estonia	Estonian Environmental Research Lab. Ltd	Toivo Truuts	Toivo@klab.envir.ee
Finland	Finnish Meteorological Institute	Veijo Pohjola	Veijo.Pohjola @fmi.fi
France	l'Ecole des Mines de Douai Laboratories Wolff	Patrice Coddeville	coddeville@ensm-douai.fr
Germany	Umweltbundesamt	Markus Wallasch	markus.wallasch@uba.de
Greece	Ministry of Environment Physical Planning and Public works	Vasiliki Smirnioudi	gogousos@mail.ekepara.org.gr
Hungary	Hungarian Meteorological Service, Institute for Atmospheric Physics	Laszlo Haszpra	haszpra@met.hu
Island	The Icelandic Meteorological office	Johanna Thorlacius	johanna@vedur.is
Ireland	Environmental Protection Agency	Concannon Colman	c.concannon@epa.ie
Italy	CNR Instituto Inquinamento Atmosferico	Cinzia Perrino	perrino@ntserver.iia.mlib.cnr.it

Country	Institute	NQAM	Email address
EU at Ispra, IT04	Joint Research Center (JRC)	Frank Raes and Jean-Philippe Putaud	frank.raes@jrc.it jean.putaud@jrc.it
Latvia	Latvian Hydrometeorological Institute	Iraida Lyulko	epoc@meteo.lv
Lithuania	Institute of Physics	Vidmantas Ulevicius	arvisj@ktl.mii.lt
The Netherlands	National Institute for public Helath and Environmental Protection (RIVM)	Arien Stolk	arien.stolk@rivm.nl
Norway	Norwegian Institute for Air Research (NILU)	Jan Erik Hanssen	jeh@nilu.no
Poland	Institute of Meteorology and Water Management and Institute of Environmental Protection	Not assigned	atm.monitoring@imgw.pl and Anna.Degorska@ios.edu.pl
Portugal	Ministério do ambiente e recursos naturals	Amadeu Contente Mota	ambientesines@mail.telepac.pt
Russia	Institute of Global Climate and Ecology	Alexey Ryaboshapko	alexey.ryaboshapko@msceast.org
Serbia and Montenegro	Federal Hydrometeorological Institute	Momcilo Zivkovic	mzivkovic@meteo.yu
Slovenia	Environment Agency - Slovenia	Andrei Kobe	andrej.kobe@gov.si
Slovak Republic	Slovak Hydrometeorological Institute	Marta Mitosinkova	marta.mitosinkova@mail.shmu.sk
Spain	Subdirección General de Calidad Ambiental	Montserrat Fernández San Miguel	mafernandez@sgca.mma.es
Sweden	Swedish Environmental Research Institute (IVL)	Karin Sjöberg	karin.sjoberg@ivl.se
Switzerland	Swiss Federal Laboratory of testing Materials and Research (EMPA)	Robert Gehrig	robert.gehrig@empa.ch
Turkey	The Ministry of Health of the Republic of Turkey	Canan Yesilyurt	ycanan@superonline.com
United Kingdom	AEA Technology	Keith Vincent	keith.vincent@aeat.co.uk

Annex 1

Data quality objectives

DQO for the acidifying and eutrophying compounds

- 10% accuracy or better for oxidised sulphur and oxidised nitrogen in single analysis in the laboratory,
- 15 % accuracy or better for other components in the laboratory,
- 0.1 units for pH,
- 15–25% uncertainty for the combined sampling and chemical analysis (components to be specified later),
- 90 % data completeness of the daily values.
- The targets, with respect to accuracy in the laboratory, for the very lowest concentrations of the main components in precipitation follow the WMO GAW (1992) recommendations for regional stations:

	Accuracy	
SO4 ²⁻	0.032 mg S/l	(1 µmol/l)
NO ₃ -	0.014 mg N/l	(1 µmol/l)
NH_4^+	0.028 mg N/l	(2 µmol/l)
Cl-	0.107 mg Cl/l	(3 µmol/l)
Ca^{2+}	0.012 mg Ca/l	(0.3 µmol/l)
K^+	0.012 mg K/l	(0.3 µmol/l)
Mg^{2+}	0.007 mg Mg/l	(0.3 µmol/l)
Na^+	0.007 mg Na/l	(0.3 µmol/l)

The targets for the wet analysis of components extracted from air filters are the same as for precipitation. For SO_2 the limit above for sulphate is valid for the medium volume method with impregnated filter. For NO_2 determined as NO_2^- in solution the accuracy for the lowest concentrations is 0.01 mg N/l.

The aim for data completeness is valid for the current definition used by the CCC. This definition will, however, be harmonised with the WMO GAW definition and modified.

DQO for heavy metals

- 90% completeness
- 30% accuracy in annual average
- Accuracy in laboratory (c= concentration):

Pb:	15% 25%	if c > 1 μg Pb/l if c < 1 μg Pb/l
Cd:	15% 25%	if c > 0.5 μg Cd/l if c < 0.5 μg Cd/l
Cr:	15% 25%	if c > 1 μg Cr/l if c < 1 μg Cr/l
Ni:	15% 25%	if c > 1 μg Ni/l if c < 1 μg Ni/l
Cu:	15% 25%	if c > 2 μg Cu/l if c < 2 μg Cu/l
Zn:	15% 25%	if c > 10 μg Zn/l if c < 10 μg Zn/l
As:	15% 25%	if c > 1 μg As/l if c < 1 μg As/l
Hg:	15% 25%	if c $> 0.01~\mu g$ Hg/l if c $< 0.01~\mu g$ Hg/l

Annex 2

Ion balances in precipitation samples 2001

Annex 3

Detection limits and precision

Country	Precision	Detection limit	Instrument
Austria AT02,04	· · ·	0.4 ppb	Horiba APOA 350E
AT05	1 ррб	0.5 ppb	Horiba APOA 360
Czech Republic	RSD: 10%	2 µg/m³	Thermo Electron Series 49
Denmark		1 ppb	API Model 400 and 400A
Estonia		2 µg/m³	Thermo Environmental Instruments TEI 49 C
Finland FI09			Dasibi Environmental corp., DAS 1008 PC
FI17	a (3)	a (3)	Environnement SA, Env. O3 41 M
FI22	2 µg/m°	2 µg/m°	Dasibi Environmental corp., DAS 1008 AH
FI37			Thermo Environmental Instruments, TEI 49 C
France FR08,10,13	a 4 3	a (3	Environnement SA, O341M
FR09,10	2 µg/m°	2 µg/m°	SERES, OZ2000
Germany		2.0 µg/m³	
Hungary			Thermo Environmental Instrument, Model 49
Ireland (IE01)			API Model400
Italy (IT01)	2 µg/m³	1 µg/m3	API Model400
Italy, EU (IT04)	2 ppb	2 ppb	Thermo Environmental Instrument, Model 49
Latvia		1 ppb	O341M Ozone Analyzer
Netherlands	1%	4 µg/m³	
Norway	2 µg/m³	2 µg/m³	API Model 400
Poland	2 µg or 1%,	2 µg/m³	Monitor Labs Inc. ML-9810
PL05	RSD 2.2%	1 ppb	Monitor Labs Inc. ML-9810
Slovakia	2 µg/m ³		TEI M49 (at SK02, 06); M49C (at SK04)
Slovenia, Sl08,32			Thermo Environmental Model 49 C
SI31,33			Monitor Labs, Model 8810
Spain			MCV, S.A. Model 48 AUV and 0341 M
Sweden, SE02,11,12	1 ppb	0.5 ppb	Monitor Labs, ML 9810 (ML 9810 B at SE 12)
SE32,35	2 ppb	2 ppb	Monitor Labs, ML 8810
Switzerland,	1 ppb	1 ppb	Thermo Environmental Instruments TEL 49C
CH02,04,05 CH3	2 ppb	1 ppb	Monitor Labs 9810
UK all sites except:	FF -	i ppo	Monitor Labs ML 8810
GB32			TECO TE49
GR43	2 ppb		Ambirack
CB40			API Model 400
6644			

Table 3.1: Detection limits and precision of ozone.

	Measure	ements	Laboratory			
Country	Precision	Detection limit; µg S/m3	Precision	Detection limit		
Austria ¹	0.7 ppb	0.1 ppb				
Czech Republic	RSD : 14.0%, CoV : 11.0% M.MAD : 0.175 μg/m ³	0.03 μg SO₂/m³	RSD : 2.7%	0.039 mg SO₄ ² /I		
Denmark	M.MAD: 0.02 ; CoV: 5 %	DK3: 0.02; DK5,DK8: 0.03	M.MAD: 0.01 µg S/m³; CoV: 1.8 %	0.01 µg S/m ³		
Estonia		0.48				
Finland		0.04 µg S/m ³	M.MAD: 0.003 µg S/m ³ CoV: 1.0%	0.01 µg S/m³		
France			at C=0.31: RSD=0.8%; CoV=2.57%	0.1 mg S/L		
Germany	M.MAD: < 0.02			0.01 μg/m ³		
Hungary		2.58				
Ireland				0.05 µgS/m³		
Italy (IT01)	RSD: 7.0% at 2.0 μg S/m ³	0.1		0.002 mg S/I		
Italy, EU (IT04) ^{2,*}	0.5 ppb	1 ppb				
Latvia		0.1-0.14				
Lithuania		0.021 mg S/m ³	at c<0.7 mg S/m ³ : 2.4% RSD; at c>0.7 mgS/m3: 0.5-1.0 % RSD	0.017 mg S/l		
Netherlands	1%	3				
Norway	M.MAD 0.04; CoV: 12%	0.03		0.01 ugS/m3		
Poland		0.2				
PL05	M.MAD = 0.13; CoV= 11.2%	0.1	RSD: 0.73%	0.5 mgS/l		
Russia	RU01: M.MAD 0.01; CoV= 3% RU18: M.MAD 0.01; CoV= 12%					
Serbia and Montenegro *				0.005 mg SO ₂ /m ³		
Slovakia			1.25%	0.1 mg S/I		
Slovenia		0.219 mg S/l		0.015 mg S/I		
Spain				(0.5 µg S/m ³) ⁴		
Sweden *	uncertainty (95% conf. int): 13%	0.02	R: 2%	0.04		
Switzerland	RSD: 4%	0.06				
³ CH02, CH04, CH05	RSD: 5%	0.2 ppb				
Turkey		0.140	M.MAD: 0.0215; CoV: 2.85%	0.016 mgS/l		

Table 3.2: Detection limits and precision of sulphur dioxide.

¹ AT, Monitor, (TEI 43BS to 15th December, after that TEI 43 C trace level) ² IT04. Monitor Environment SA, AF 21M ³ CH02. CH04: TEI 43C TL; CH05: TEI 43BS

⁴ Official data from Spain is from UV fluorescence monitor, lab.det. limit is from det abs.solution method which also is reported to CCC.

*Data from IT04, SE and YU are taken from earlier years

	Measureme	ents	Laboratory		
Country	Precision	Detection limit, µgN/m ³	Precision	Detection limit	
Austria ¹	1 ppb	0.5 ppb			
Czech Republic	RSD: 12%	0.07 mg N/m ³	RSD: 3.4%	0.001 mg NO ₂ /I	
Denmark		DK08: 0.07	M.MAD: 0.01; CoV: 2.1%	0.01 µg N/m ³	
Estonia		0.07			
Finland	0.3 µg N/m ³	0.3			
Hungary		0.09	M.MAD: 0.001; CoV: 0.949%		
Ireland				0.1 μg N/m ³	
Italy (IT01)	0.6 µg N/m ³	0.3			
Italy, EU (IT04) ^{2,*}	0.5 ppb	0.5 ppb			
Latvia		0.1	CoV: 1.3%	0.05 mg N/I	
Lithuania		0.17	at c<2.0 μg N/m ³ : 3.75-6.9% RSD	0.03 mg N/I	
Netherlands	1%	2			
			RSD: 7.0% at c=0.03 mgN/l		
Norway	M.MAD: 0.13; CoV: 5%	0.03	RSD: 4.6% at c=0.17 mgN/l	0.0045 mg N/l	
			RSD: 4.2% at c=0.08 mgN/l		
Poland		0.2	RSD: 1.0% at 0.304 mgN/l	0.008 mg N/I	
		0.2	RSD: 5.9 % at 0.015 mgN/l	0.000 mg 14/1	
PL05	M.MAD: 0.13; CoV: 5%	0.2	RSD: 3.17%	0.02 mg N/I	
Serbia and Montenegro				$0.003 \text{ mg NO}_2\text{/m}^3$	
Slovakia			3.51%	0.003 mg N/I	
Spain				(1 µg N/m ³) ⁴	
Sweden*	uncertainty (95% conf.int.): 12%	0.2	R: 2%	0.048	
Switzerland ³ CH04, CH05	RSD: 5%	0.5 ppb			
CH02, CH03	RSD: 3%	0.5 ppb			
CH01		0.05 ppb			
Turkey	M.MAD: 0.0503; CoV: 12.29%	0.114	M.MAD: 0.0553; CoV: 6.26%	0.02 mg N/I	

Table 3.3: Detection limi	ts and precision	of nitrogen	dioxide.
---------------------------	------------------	-------------	----------

¹AT: Monitor, HORIBA APNA 360

²IT04: Monitor, Thermo Environment 42C

³CH04 and CH05: Monitor Labs 9841A; CH02 and CH03: APNA 360; CH01: Eco Physics CLD 770AL ppt + PLC 760 ⁴Official data from Spain is from Chemiluminescence monitor. Lab.det. limit is from the

abs.solution method which also is reported to CCC.

Data from IT04, SE and YU are taken from earlier years.

	Measurer	nents	Laboratory	
Country	Precision	Detection limit, µgS/m ³	Precision	Detection limit
Czech Republic*	0.062 M.MAD, 6.3% CoV	0.003		
Donmark	M.MAD: 0.05 µgS/m ³	DK03, DK05: 0.03		
Denmark	CoV: 6,5 %	DK08: 0.02		
Estonia		0.53		
Finland		0.04 µg S/m ³	M.MAD: 0.002 μg S/m³; CoV: 0.5%	0.01 μg S/m ³
France			at c=0.31: RSD=0.8%; CoV= 2.57%	0.2 µg S/filter
Germany	M.MAD < 0.02 μg/m ³			0.01 µg/m³
Hungary		0.07		
Ireland				0.05 μg/m³
Italy (IT01)	RSD: 1.3% at 1 μg S/m ³	0.01		0.002 mg S/I
Italy, EU (IT04)*		0.066 ppm	M.MAD. 0.01 ppm; CoV: 1.3%	
Latvia		0.1-0.14	CoV: 1.4%	0.1 mg S/I
Lithuania		0.024 μg S/m ³	at c<1.0 μgS/m ³ : 7.2% RSD; at c>1.0 mgS/m ³ : 1.0% RSD	0.024 mgS/I
Netherlands			SD: 0.07 nmol/filter	0.7 µmol/filter
Norway	M.MAD 0.009 μg S/m ³ at c<2.4 μg S/m ³	0.01		
Poland		0.18		
PL05		0.1	RSD: 4%	0.5 mg S/I
Russia	RU01: M.MAD 0.01; CoV=2.5% RU16: M.MAD 0.02; CoV=7.5% RU18: M.MAD 0.01; CoV=2.3%			
Slovakia			2.12%	0.02 mg S/I
Slovenia				0.015 mg S/I
Spain				0.01 µg S/m ³
Sweden*	uncertainty (95% conf. int.): 113%	0.005	R: 2%	0.005
Switzerland	RSD: 10%	0.04		
Turkey		0.04	M.MAD: 0.0225; CoV: 4.11%	0.014 mg S/I
UK*			RSD: 2%	0.01 mg S/I

 Table 3.4:
 Detection limits and precision of sulphate in air.

	Measurements Lab		Laborato	ry
Country	Precision	Detection limit, µgN/m3	Precision	Detection limit
Donmark	M.MAD: 0.04 µg N/m ³	DK05,08: 0.02	M.MAD: 0,01 µg N/m ³	0.01 ug N/m^3
Deninark	CoV: 7,3%	DK03: 0.04	CoV: 1.0%	0.01 µg N/m
Finland		$0.02 \ \mu g \ N/m^3$	M.MAD: 0.001 μ g N/m ³ CoV: HNO ₃ = 5.0% and NO ₃ = 0.9%	0.005 μg N/m³
Germany	< 0.02 µg/m³ M.MAD			0.01 µg/m ³
Hungary		HNO ₃ : 0.08; NO ₃ : 0.03		0.002 mg N/I
Italy (IT01)	HNO ₃ : RSD: 6.2% at 0.25 μg N/m ³	HNO ₃ : 0.01		0.002 mg N/I
	NO ₃ : RSD: 1.5% at 1 µg N/m ³	NO ₃ : 0.01		
Italy, EU (IT04)*		0.246 ppm	M.MAD: 0.01 ppm CoV: 1.2%	
Latvia		NO₃: 0.015-0.020	CoV (NO ₃): 2.2%	0.1 mg N/I
Lithuania		0.014	c=0.3-1.0 μg N/m³; 0.5-1.2% RSD	0.013 mg N/I
Norway	M.MAD 0.012 at <1.6 µg N/m ³	0.02		
Poland		0.02		
PL05	M.MAD: 0.11; CoV: 16.9%	0.2	RSD: 2%	0.05 mg N/l
Russia	NO3: RU18: M.MAD 0.01; CoV=4.9%			
Slovakia			HNO ₃ :1.71%; NO ₃ : 1.36	HNO ₃ : 0.02 mg N/l; NO ₃ : 0.01 mg N/l
Slovenia		NO₃: 0.006 mg N/I		0.01 mg N/I
Spain				0.06 μg N/m ³
Sweden*	uncertainty (95% conf. int.): 112%	NO ₃ : 0.002; HNO ₃ : 0.004	R: 2%	NO ₃ : 0.002; HNO ₃ : 0.005
Switzerland	RSD: 8%	0.06		
Turkey		NO₃: 0.055 HNO₃: 0.075	NO3: M.MAD: 0.0073; CoV: 5.73% HNO3: M.MAD: 0.0073; CoV: 16.87%	0.03 mg N/l

Table 3.5: Detection limits and precision of nitrate and nitric acid in air.

Data from SE and IT04 are taken from earlier years

	Measurements		Laboratory		
Country	Precision	Detection limit, µgN/m ³	Precision	Detection limit	
Denmark	M.MAD: 0.13 CoV: 6.6%	0.04	NH₄: M.MAD: 0.02; CoV: 1.1% NH₃: M.MAD: 0.01; CoV: 1.2%	NH₄: 0.01 μg N/m ³ NH₃: 0.02 μg N/m ³	
Finland		0.04 μg N/m ³	M.MAD: 0.004 μg N/m ³ ; CoV: 1.5%	0.01 μg/m ³	
Germany	M.MAD < 0.02 µg/m ³			0.01 µg/m ³	
Hungary		NH₃: 0.43; NH₄: 2.58			
Italy (IT01)	NH ₃ : RSD: 3.9% at 1 μg N/m³ NH ₄ : RSD: 4.2% at 2 μg N/m³	0.1			
Italy, EU (IT04)*		0.061 ppm			
Latvia		NH4: 0.15-0.17	CoV (NH ₄): 2.1%	0.05 mg N/I	
Lithuania		0.027	at c<1.0 μg N/m ³ : 4.0% RSD at c>1.0 mg N/m ³ : 0.6-1.8% RSD	0.04 mgN/l	
Netherlands	NH₃: RSD: <2%	NH ₃ : 0.12	NH₄, SD: 0.0025 nmol/filter	NH₄: 0.4 µmol/filter	
Norway		0.05-0.1			
Poland		0.08			
PL05	M.MAD: 0.24; CoV: 20.8%	0.03	RSD: 1.64%	0.01 mg N/l	
Russia	NH4: RU01: M.MAD 0.01; CoV=4.5% NH4: RU16: M.MAD 0.01; CoV=3.5% NH4: RU18: M.MAD 0.01; CoV=2.1%				
Slovenia		NH₄: 0.018 mg N/l; NH₃: 0.084 mg N/l		0.008 mg N/l	
Spain		0.03	2.68 %	0.03 μg N/m ³	
Sweden*	uncertainty (95% conf. int.): 113%	0.03	R: 3%	NH₄: 0.017; NH₃: 0.03	
Switzerland	RSD: 7%	0.2			
Turkey		NH₄: 0.16 NH₃: 0.084	NH₄: M.MAD: 0.1080; CoV: 14.96% NH₃: M.MAD: 0.0210; CoV: 7.74%	NH₄: 0.04 NH₃: 0.05	

Table 3.6: Detection limits and precision of ammonia and ammonium in air.

	Measurem	ents	Laboratory	
Country	Precision	Detection limit, mgS/l	Precision	Detection limit, mgS/I
Austria		0.012	RSD: 1.3%	0.002
Czech Republic	RSD: 8.6%; CoV: 7.9% M.MAD: 0.231 mg/l	0.02	RSD: 1.4%	0.02
Denmark			M.MAD: 0.01; CoV: 1.6%	0.04
Estonia		0.347		0.221
Finland			M.MAD: 0.006 mg S/l; CoV: 2.0%	0.02
France			at c=0.262: RSD=0.64%; CoV=2.43% at c=1.322: RSD=2.31%; CoV=1.75%	0.02
Germany				0.01
Hungary			M.MAD=0.081; CoV=3.79%	ca. 0.03
Italy (IT01)	RSD: 1.1% at 1 mg S/I	0.01 mg S/I	RSD: 0.8% at 0.5 mg S/I RSD: 1.6% at 0.05 mg S/I	0.002
Latvia			CoV: 1.7%	0.030
			c<0.5 mgS/l: 3.4% RSD	0.02
Lithuania			c>0.5 mgS/l: 1.0% RSD	
Netherlands			SD: 0.2	1 µmol/l
Nerwoy			SD: 0.041 at c=2.23 mgS/l	0.01
Norway	WI.WAD. 0.03, COV. 7%		SD: 0.019 at c=0.85 mgS/l	0.01
Poland			RSD: 1% at 6.7 mg S/l RSD: 1.8% at 0.67 mg S/l RSD: 2% at 0.33 mgS/l	0.03
PL05	M.MAD: 0.03; CoV: 3.7%	0.1	M.MAD: 0.03; CoV: 7%	0.1
Portugal			0.75%	0.15
Russia			CoV: 5.5%; M.MAD: 0.02	0.02
Serbia and Montenegro*				0.16
Slovakia			3.13%	0.01
Spain			CoV: 1.4 %	0.07
Sweden*	uncertainty (95% conf. int.): 15%	0.004	R: 2%	0.004
Switzerland	M.MAD: 0.01			0.02
Turkey			M.MAD: 0.0178; CoV: 1.83%	0.040
UK*				0.16

Table 3.7: Detection limits and precision of sulphate in precipitation.

	Measurements		Laboratory	
Country	Precision	Detection limit mgN/l	Precision	Detection limit mgN/l
Austria		0.013	RSD: 0.7%	0.001
Czech Republic	RSD: 9.21%; CoV: 4.3% M.MAD: 0.104 mg/l	0.03 mg/l	RSD: 0.9%	0.03
Denmark			M.MAD: 0.02; CoV: 1.7%	0.02
Estonia		0.302		0.167
Finland			M.MAD: 0.003 mg N/l; CoV: 1.5%	0.01
France			at c=0.351: RSD=0.65%; CoV=1.85% at c=2.371: RSD=3.2%; CoV=1.37%	0.02
Germany				0.01
Hungary			M.MAD=0.047; CoV=2.78%	ca. 0.03
Italy (IT01)	PSD: 1.4% at 1 maN//	0.01	RSD: 0.7% at 0.5 mgN/l	0.002
	RSD. 1.4% at Thigh/i	0.01	RSD: 1.5% at 0.05 mgN/l	
Italy, EU (IT04)*				0.011 ppm
Latvia			CoV: 2%	0.060
Lithuania			c<0.5 mgN/I: 5.1% RSD c>0.5 mgN/I: 1.8% RSD	0.013
Netherlands			SD: 0.5	2 μmol/l
Nonwoy			SD: 0.023 at c=0.86 mg N/ml	0.01
Norway	WI.WAD. 0.03, COV. 8%		SD: 0.016 at c=0.39 mg N/ml	
			RSD: 1.7% at 4.5 mg N/I	
Poland			RSD: 1.9% at 0.45 mg N/I	0.015
			RSD: 2.0% at 0.23 mg N/I	
PL05	M.MAD: 0.01; CoV: 2.1%	0.1	M.MAD: 0.03; CoV: 7.4%	0.1
Portugal			0.25%	0.02
Russia			CoV: 1.2%; MAD: 0.01	0.01
Serbia and Montenegro*				0.02
Slovakia			0.59%	0.01
Spain			CoV: 1.2%	0.08
Sweden*	uncertainty (95% conf. int.): 15%	0.002	R: 2%	0.002
Switzerland			M.MAD: 0.01	0.05
Turkey			M.MAD: 0.0047; CoV: 1.08%	0.030
UK*			4%	0.03

 Table 3.8: Detection limits and precision of nitrate in precipitation.

	Measurements		Laboratory	
Country	Precision	Detection limit, mgN/l	Precision	Detection limit, mgN/l
Austria		0.013	RSD 3.7%	0.007
Czech Republic	RSD: 12.4%; CoV: 6.6% M.MAD: 0.075 mg/l	0.02 mg/l	RSD: 2.2%	0.02
Denmark			M.MAD: 0.01; CoV: 1.3%	0.01
Estonia		0.064		0.077
Finland			M.MAD: 0.001 mg N/l; CoV: 0.5%	0.002
France			at c<0.207: RSD=2.04%; CoV=9.86%	0.03
Germany				0.01
Hungary			M.MAD=0.003; CoV=1.07%	ca. 0.04
Italy (IT01)	PSD: 0.8% at 0.5 mg N/	0.005	RSD: 0.5% at 0.5 mg N/I	0.001
	RSD: 0.8% at 0.5 mg N/I	0.005	RSD: 1.8% at 0.05 mg N/I	
Latvia			CoV: 0.7%	0.007
Lithuania			c<1.0 mg N/I: 3.3% RSD	0.04
Enridania			c>1.0 mg N/I: 1.0% RSD	
Netherlands			SD: 0.2	1 µmol/l
Norway	M.MAD: 0.06, CoV: 20%		SD: 0.016 at c=0.64 mg/l	0.01
			SD: 0.013 at c=0.32 mgN/l	
Poland			RSD: 2.7% at 1 mg/l	0.03
			RSD: 4.6% at 0.1 mg/l	
PL05	M.MAD: 0.094; CoV: 18%	0.01	M.MAD: 0.05; CoV: 10%	0.01
Portugal			0.79%	0.04
Russia			CoV: 6.1%; MAD: 0.01	0.02
Serbia and Montenegro*				0.03
Slovakia			1.97%	0.01
Spain			CoV: 2.7%	0.08
Sweden*	uncertainty (95% conf.int.): 15%	0.02	R: 3%	0.02
Switzerland			M.MAD: 0.02	0.02
Turkey			M.MAD: 0.0105; CoV: 2.61%	0.038
UK*			10%	0.03

Table 3.9: Detection limits and precision of ammonium in precipitation.

	Measurements		Laboratory		
Country	Precision	Detection limit, mg/l	Precision	Detection limit, mg/l	
Austria		0.11	RSD: 2%	0.003	
Czech Republic	RSD: 7.0%; CoV: 4.5% M.MAD: 0.109 mg/l	0.014	RSD: 2.0%	0.014	
Denmark			M.MAD: 0.01; CoV: 3.8%	0.13	
Estonia		0.407		0.382	
Finland			M.MAD: 0.001 mg/l; CoV: 2.2%	0.005	
France			at c=0.264: RSD=2.83%; CoV=10.72% at c=1.197: RSD=3.72%; CoV=3.11%	0.02	
Germany				0.01	
Hungary			M.MAD: 0.003; CoV: 1.33%	ca. 0.01	
Ireland				0.05	
Italy (IT01)	RSD: 1.8% at 1 mg Ca/l	0.01	RSD: 1.2% at 0.5 mg Ca/l	0.002	
Latvia			CoV: 4 1%	0.095	
			c<0.2mgCall: 5.5% RSD	0.000	
Lithuania			c>0.2 mgCa/l: 1.5% RSD	0.02	
Netherlands			SD: 0.4	1.5 μmol/l	
Norway	M.MAD: 0.03; CoV: 59%		SD: 0.010 at c=0.27 mg/l	0.01	
			SD: 0.006 at c=0.15 mg/l		
			RSD: 0.9% at 2 mg/l		
Poland			RSD: 1.8% at 0.8 mg/l	0.03	
			RSD: 2.1% at 0.4 mg/l		
PL05	M.MAD: 0.019; CoV: 13%	0.02	M.MAD: 0.002; CoV: 1.6%	0.001	
Portugal			1.31%	0.06	
Russia			CoV: 10.7%; MAD: 0.03	0.05	
Serbia and Montenegro*			81%	0.005	
Slovakia			0.91%	0.02	
Spain			CoV: 7.4%	0.04	
Sweden*	uncertainty (95% conf. int.): 18%	0.05	R: 5%	0.04	
Switzerland			M.MAD: 0.02	0.02	
Turkey			M.MAD: 0.0199; CoV: 2.10%	0.032	
UK*			5%	0.05	

Table 3.10: Detection limits and precision of calcium in precipitation.

	Measurements Laborator		ory	
Country	Precision	Detection limit, mg/l	Precision	Detection limit, mg/l
Austria		0.015	RSD: 2.3%	0.005
Czech Republic	RSD: 18.7%; CoV: 5.1% M.MAD: 0.003 mg/l		RSD: 10.2%	0.008
Denmark			M.MAD: 0.01; CoV: 2.5%	0.06
Estonia		0.095		0.1
Finland			M.MAD: 0.002 mg/l; CoV: 3.5%	0.006
France			at c=0.183: RSD=2.1%; CoV=11.51% at c=0.996: RSD=4.23%; CoV=4.25%	0.02
Germany				0.01
Hungary			M.MAD: 0.003; CoV: 2.24%	ca. 0.01
Italy (IT01)	RSD: 1.4% at 1 mg K/I	0.01	RSD: 1.5% at 0.5 mg K/l RSD: 3.0% at 0.05 mg K/l	0.002
Latvia			CoV: 5.5%	0.043
Lithuania			RSD: 8.1% at c<0.5 mg K/I	0.02
Netherlands			SD: 0.2	1 μmol/l
Norway	M.MAD: 0.03; CoV: 59%		SD: 0.027; c=0.61 mg/l SD: 0.015; c=0.20 mg/l	0.01
Poland			RSD: 1.0% at 0.5 mg/l RSD: 2.9% at 0.1 mg/l RSD: 2.4% at 0.05 mg/l	0.02
PL05	M.MAD: 0.006; CoV: 15.5%	0.04	M.MAD: 0.001; CoV: 0.8%	0.002
Portugal			1.69%	0.077
Russia			CoV: 9%; MAD: 0.03	0.03
Serbia and Montenegro*			98%	0.015
Slovakia			2.13%	0.03
Spain			CoV: 18%	0.05
Sweden*	uncertainty (95% conf. int.): 114%	0.05	R: 8%	0.05
Switzerland			M.MAD: 0.01	0.02
Turkey			M.MAD: 0.0063; CoV: 2.62%	0.019
UK*			6%	0.05

Table 3.11: Detection limits and precision of potassium in precipitation.

	Measurements		Laboratory	
Country	Precision	Detection limit, mg/l	Precision	Detection limit, mg/l
Austria		0.037	RSD: 3.6%	0.009
Czech Republic	RSD: 12.6%; CoV: 11.1% M.MAD: 0.047 mg/l	0.02	RSD: 1.4%	0.02
Denmark			M.MAD: 0.07; CoV: 2.3%	0.06
Estonia		0.463		0.155
Finland			M.MAD: 0.003 mg/l; CoV: 1.4%	0.01
France			at c=0.604: RSD=1.43%; CoV=2.37% at c=2.984: RSD=6.03%; CoV=2.02%	0.02
Germany				0.01
Hungary			M.MAD: 0.092; CoV: 24%	ca. 0.1
Ireland				0.05
Italy (IT01)	RSD: 0.7% at 0.5 mg Cl/l	0.005	RSD: 0.6% at 0.5 mg Cl/l RSD: 1.1% at 0.05 mg Cl/l	0.001
Italy, EU (IT04)*				0.032 ppm
Latvia			CoV: 2.09%	0.084
Lithuania			c<0.5 mg Cl/l: 4.7% RSD c>0.5 mg Cl/l: 2.3% RSD	0.01
Netherlands			SD: 0.7	3 μmol/l
Norway	M.MAD: 0.16, CoV: 22%		SD: 0.028 at c=1.16 mg/l SD: 0.02 at c=0.46 mg/l	0.01
Poland			RSD: 1.9% at 10 mg/L RSD: 2% at 1 mg/L RSD: 2.6% at 0.5 mg/L	0.02
PL05	M.MAD: 0.02; CoV: 3.9%	0.1	M.MAD: 0.04; CoV: 9.2%	0.1
Portugal			0.53%	0.03
Russia			CoV: 12%; M.MAD: 0.01	0.03
Serbia and Montenegro*				0.05
Slovakia			0.66%	0.04
Spain			CoV: 4.9%	0.31
Sweden*	uncertainty (95% conf. int.): 18%	0.05	R: 2%	0.05
Switzerland			M.MAD: 0.02	0.01
Turkey			M.MAD: 0.063; CoV: 13.68%	0.050
UK*			3%	0.05

Table 3.12: Detection limits and precision of chloride in precipitation.
	Measureme	ents	Laboratory	
Country	Precision	Detection limit, mg/l	Precision	Detection limit, mg/l
Austria		0.034	RSD: 1.2%	0.002
Czech Republic	RSD: 13.8%; CoV: 8.9% M.MAD: 0.01 mg/l	0.002	RSD: 3.6%	0.002
Denmark			M.MAD: 0.02; CoV: 2.8%	0.01
Estonia		0.077		0.089
Finland			M.MAD: 0.001 mg/l; CoV: 2.1%	0.003
France			at c=0.213; RSD=1.17%; CoV=5.5% at c=1.05: RSD=2%; CoV=1.91%	0.02
Germany				0.01
Hungary			M.MAD: 0.003; CoV: 3%	ca. 0.01
Ireland				0.05
ltaly (IT01)	RSD: 1.1% at 0.5 mg Mg/l	0.005	RSD: 0.8% at 0.5 mg Mg/l RSD: 3.2% at 0.05 mg Mg/l	0.001
Latvia			CoV: 3.9%	0.020
Netherlands			SD: 0.2	1 μmol/l
Norway	M.MAD: 0.01, CoV: 30%		SD: 0.012 at c=0.31 mg/l SD: 0.007: c=0.19 mg/l	0.01
Poland			RSD: 1.0% at 0.25mg/l RSD: 1.0% at 0.1 mg/l RSD: 2.4% at 0.025 mg/l	0.007
PL05	M.MAD: 0.002; 7%	0.01	M.MAD: 0.001; CoV: 3.5%	0.001
Portugal			0.60%	0.03
Russia			CoV: 31%; MAD: 0.02	0.001
Serbia and Montenegro*			99.5%	0.002
Slovakia			1.56%	0.03
Spain			CoV: 7.2%	0.02
Sweden*	uncertainty (95% conf. int.): 15%	0.02	R: 3%	0.01
Switzerland			M.MAD: 0.01	0.03
Turkey			M.MAD: 0.0033; CoV: 4.37%	0.012
UK*			3.5%	0.05

Table 3.13: Detection limits and precision of magnesium in precipitation.

* Data from SE, UK and YU are taken from earlier years.

	Measureme	ents	Laborato	ry
Country	Precision	Detection limit, mg/l	Precision	Detection limit, mg/l
Austria		0.021	RSD: 1.2%	0.003
Czech Republic	RSD: 13.4%; CoV: 6.8% M.MAD: 0.007 mg/l	0.007	RSD: 2.6%	0.007
Denmark			M.MAD: 0.06; CoV: 3.1%	0.07
Estonia		0.095		0.1
Finland			M.MAD: 0.001 mg/l; CoV: 0.9%	0.002
France			at c=0.561; RSD=1.64%; CoV=2.92% at c=3.872: RSD=7.79%; CoV=2.01%	0.02
Germany				0.01
Hungary			M.MAD: 0.004%; CoV: 1.07%	ca. 0.01
Ireland				0.05
Italy (IT01)	RSD:	0.005	RSD: 1.3% at 0.5 mg Na/l	0.001
	0.9% at 0.5 mg Na/i		RSD: 2.0% at 0.05 mg Na/I	
Latvia			CoV: 1.5%	0.053
Lithuania			RSD 2.4-5.7%	0.02
Netherlands			SD: 0.5	2 µmol/l
Norway	M.MAD: 0.09, CoV: 22%		SD: 0.025 at c=0.75 mg/l SD: 0.011 at c=0.30 mg/l	0.01
Poland			RSD: 0.8% at 1 mg/l RSD: 1.4% at 0.4 mg/l RSD: 2.3% at 0.2 mg/l	0.02
PL05	M.MAD: 0.011; CoV: 13.9%	0.02	M.MAD: 0.002; CoV: 2.0%	0.002
Portugal			0.54%	0.025
Russia			CoV: 5.6%; MAD: 0.02	0.01
Serbia and Montenegro*			98.25%	0.001
Slovakia			1.28%	0.04
Spain			CoV: 14%	0.1
Sweden*	uncertainty (95% conf. int.): 112%	0.05	R: 4%	0.05
Switzerland			M.MAD: 0.02	0.03
Turkey			M.MAD: 0.0063; CoV: 1.98%	0.023
UK*			3.50%	0.03

Table 3.14: Detection limits and precision of sodium in precipitation.

" Data from SE, UK and YU are taken from earlier years.

	Meas	Measurements		Laboratory	
Country	Precision	Detection limit, µg/l	Precision	Detection limit, µg/l	
Estonia *		0.2			
Finland			M.MAD: 0.008 µg/l; CoV: 10.5%	0.006	
Germany				0.004	
Slovakia			1.99%	0.5	
Norway				0.1	

Table 3.15: Detection limits and precision of arsenic in precipitation.

* Data from EE is taken from earlier years.

Table 3.16: Detection limits and precision of cadmium in precipitation.

	Measurements		Laboratory	
Country	Precision	Detection limit, µg/l	Precision	Detection limit, µg/l
Czech Republic	RSD: 9.5%; CoV: 10.9% M.MAD : 0.028 μg/l	0.04	RSD : 8.5%	0.04
Estonia *		0.01		
Finland			M.MAD: 0.002 µg/l CoV: 3.0%	0.002
Germany				0.003
Latvia			CoV: 12.3%	0.052
Slovakia			2.01 %	0.1
Netherlands			SD: 0.00007	0.0003 umol/l
Norway				0.005

* Data from EE is taken from earlier years.

	Measurements		Laboratory	
Country	Precision	Detection limit, µg/l	Precision	Detection limit, µg/l
Finland			M.MAD: 0.04 µg/l; CoV: 21.8%	0.02
Germany				0.01
Slovakia			1.58 %	0.04
Norway				0.2

Table 3.18: Detection limits and precision of copper in precipitation.

	Measurer	nents	Laboratory	
Country	Precision	Detection limit, μg/l	Precision	Detection limit, µg/l
Estonia *		26		
Finland			M.MAD: 0.057 μg/l; CoV: 4.7%	0.05
Germany				0.01
Latvia			CoV: 12.7%	0.2
Poland (PL05)	M.MAD: 0.2; CoV: 23.3%	0.3	M.MAD: 0.1; CoV:11%	0.3
Norway				0.1
Netherlands			SD: 0.0014	0.006 µmol/l
Slovakia			1.83 %	0.2

* Data from EE is taken from earlier years.

	Measurements		Laboratory	
Country	Precision	Detection limit, µg/l	Precision	Detection limit, µg/l
Czech Republic	RSD: 14.6%; CoV: 15.8% M.MAD : 0.02mg/l	6	RSD: 9.4%	6
Finland			M.MAD: 3.21 µg/l CoV: 9.6%	1.5
Germany				0.5
Netherlands			SD: 0.09	0.4 μmol/l

Table 3.19: Detection limits and precision of iron in precipitation.

Table 3.20: Detection limits and precision of manganese in precipitation.

	Measurements		Laboratory	
Country	Precision	Detection limit, µg/l	Precision	Detection limit, µg/l
Czech Republic	RSD: 9.1%; CoV: 7.6% M.MAD : 2.15 μg/l	0.5	RSD : 5.2%	0.5
Finland			M.MAD: 0.073 µg/l CoV: 3.4%	0.005
Slovakia			2.96%	0.05

Table 3.21: Detection limits and precision of nickel in precipitation.

	Measurements		Laboratory	
Country	Precision	Detection limit, µg/l	Precision	Detection limit, µg/l
Czech Republic	RSD: 8.1% CoV: 7.6% M.MAD : 0.175 μg/l	1.0	RSD : 4.1%	1.0
Finland			M.MAD: 0.04 µg/l CoV: 15.5%	0.02
Germany				0.2
Norway				0.2
Slovakia			2.34 %	0.1

Table 3.22: Detection limits and precision of lead in precipitation.

	Measurements		Labo	ratory
Country	Precision	Detection limit, µg/l	Precision	Detection limit, µg/l
Czech Republic	RSD: 9.0%; CoV: 7.0% M.MAD: 0.471 μg/l	0.7	RSD: 8.2%	0.7
Estonia*		0.6		
Finland			M.MAD: 0.049 µg/l CoV: 3.7%	0.03
Germany				0.002
Latvia			CoV: 10.4%	0.56
Netherlands			SD: 0.0005	0.002 µmol/l
Norway				0.01
Slovakia			3.52%	0.2

* Data from EE is taken from earlier years.

	Measureme	nts	Laboratory	
Country	Precision	Detection limit, µg/l	Precision	Detection limit, μg/l
Czech Republic	RSD: 11.3%; CoV: 9.4% M.MAD: 0.003 mg/l	3	RSD: 7.4%	3
Finland			M.MAD: 0.183 µg/l CoV: 3.1%	0.03
Germany				0.2
Latvia			CoV: 2.2%	0.95
Netherlands			SD: 0.014	0.06 µmol/l
Norway				0.1
Poland (PL05)	M.MAD: 2.3 μg Zn/l; CoV: 24%	0.2	M.MAD: 0.2; CoV 1.9%	0.2
Slovakia			3.17 %	1.69

Table 3.23: Detection limits and precision of zinc precipitation.

Table 3.24: Detection limits and precision of arsenic in air.

	Measure	ements	La	boratory
Country	Precision	Detection limit, ng/m ³	Precision	Detection limit
Czech Republic	RSD: 13.3%; CoV: 11.8% M.MAD: 0.15 ng/m ³	0.2 ng/m ³	RSD: 8.7%	0.75 μg/l
Germany				0.004 μg/l
Slovakia			2.34 %	0.7 μg/l
Netherlands *			0.04	0.2 ng/m ³
Norway, NO42				0.005 ng/m ³
NO99				fine: 0.9 ng/m ³ ; coarse: 0.24 ng/m ³

* Data from NL is taken from earlier years.

1 u o c 0.20. Detection timus and precision of equilitant in an	Та	ıble	3.	25:	D	Detection	limits	and	precision	of	^c cadmium	in	air
---	----	------	----	-----	---	-----------	--------	-----	-----------	----	----------------------	----	-----

	Measure	ements	La	boratory
Country	Precision	Detection limit, ng/m ³	Precision	Detection limit
Czech Republic	RSD: 10.7%; CoV: 13.7% M.MAD: 0.042 ng/m ³	0.01 ng/m ³	RSD: 4.1%	0.05 μg/l
Germany				0.003 μg/l
Lativia		0.015	CoV: 1.6%	0.77 μg/l
Slovakia			1.44 %	0.04 μg/l
Netherlands *			0.01	0.04 ng/m ³
Norway, NO42				0.002 ng/m ³
NO99				fine: 0.002 ng/m ³ ; coarse: 0.001 ng/m ³

* Data from NL is taken from earlier years.

		Measu	rements	Laboratory		
Country		Precision	Detection limit, ng/m ³	Precision	Detection limit	
Slovakia				1.01 %	0.4 μg/l	
Norway,	NO42				0.02 ng/m ³	
	NO99				fine: 0.3 ng/m ³ ; coarse: 0.6 ng/m ³	

Table 3.26: Detection limits and precision of chromium in air.

Table 3.27: Detection limits and precision of copper in air.

	Measure	ements	Laboratory		
Country	Precision	cision Detection limit, ng/m ³ Precision		Detection limit	
Germany				0.01 μg/l	
Latvia				17 μg/l	
Slovakia			1.41%	0.5 μg/l	
Norway, NO42				0.01 ng/m ³	
NO99				fine: 0.04 ng/m ³ ; coarse: 0.02 ng/m ³	

Table 3.28: Detection limits and precision of manganese in air.

	Mea	surements	Laboratory		
Country	Precision	Detection limit, ng/m ³	Precision	Detection limit	
Germany				0.002 μg/l	
Latvia		0.15	CoV: 2.2%	5.9 μg/l	
Slovakia			3.06%	0.1 μg/l	
Norway, NO42				0.07 ng/m ³	

Table 3.29: Detection limits and precision of nickel in air.

	Meas	surements	Laboratory		
Country	Precision	Detection limit, ng/m ³	Precision	Detection limit	
Germany				0.01 μg/l	
Latvia		0.22	CoV: 1.1%	7.5 μg/l	
Slovakia			1.32%	0.4 μg/l	
Norway, NO42				0.02 ng/m ³	
NO99				fine: 0.008 ng/m ³ ; coarse: 0.02 ng/m ³	

	Measure	ments	Lab	oratory
Country	Precision	Detection limit, ng/m ³	Precision	Detection limit
Czech Republic	RSD: 10.2%; CoV: 10.6% M.MAD: 0.8 ng/m ³	0.2 ng/m ³	RSD: 2.1%	0.78 μg/l
Germany				0.002 μg/l
Lativia		0.29000	CoV: 3.6%	5 μg/l
Slovakia			1.96%	0.4 μg/l
Netherlands *			0.06	0.2 ng/m ³
Norway, NO42				0.007 ng/m ³
NO99				fine: 0.008 ng/m ³ ; coarse: 0.004 ng/m ³

Table 3.30: Detection limits and precision of lead in air.

* Data from NL is taken from earlier years.

Table 3.31 ·	Detection	limits	and	nrecision	of zinc	in air
<i>Tuble 5.51</i> .	Delection	iiniis	unu	precision	0j 2inc	m an.

		Meas	urements	Laboratory		
Country		Precision	Detection limit, ng/m ³	Precision	Detection limit	
Lativia			1.5	CoV: 2.7%	13 μg/l	
Slovakia				3.53%	4.6 μg/l	
Netherlan	ds *			3.6	15 ng/m ³	
Norway,	NO42				0.01 ng/m ³	
	NO99				fine: 0.05 ng/m ³ ; coarse: 0.02 ng/m ³	

* Data from NL is taken from earlier years.

Table 3.32: Detection limits and precision of measurements of particulate matter.

Country	Precision	Detection limit
Germany (PM10)		1 μg/m ³
Slovakia (TSP)	2.00%	0.2 μg/m ³
Switzerland (PM10)	RSD: 7%	1 μg/m ³
Norway (PM10)	RSD: 5%	0.2 μg/m ³

	Laboratory detection limit. [ppb]				
Compund	Czech Republic *	France	Germany	Finland*	Spain
VOC (general)		0.01	0.01		-
Ethane	0.055			0.008	0.33
Ethene	0.020			0.009	0.35
Ethyne	0.041			0.011	
Propane	0.008			0.006	0.89
Propene	0.011			0.007	3.38
Propyne	0.003			0.004	
N-butane	0.003			0.005	0.59
2-methyl propane (i-butane)	0.005			0.005	1 81
2-methyl propene (i-butene)	0.006			0.006	1.01
1-butene	0.009			0.005	0.52
Trans-2-butene	0.004			0.005	0.52
Cis-2-butene	0.008			0.006	0.57
1.3 butadiono	0.000			0.000	0.37
N poptano	0.009			0.000	1 30
2 mothyl bytana (i poptana)	0.003			0.005	1.59
2-methyl bulane (i-pentane)	0.000			0.005	0.51
Trana 2 pontono	0.010			0.005	0.51
Cia 2 pontono	0.012			0.005	0.45
Cis-2-pentene	0.009			0.006	1.15
2-methyl pentane	0.003			0.006	
3-methyl pentane	0.012			0.006	
Isoprene	0.006			0.008	0.58
N-nexane	0.011			0.006	0.4
Hexene					0.54
Cyclohexane	0.003			0.006	
N-heptane	0.023			0.004	0.94
Benzene	0.012			0.003	0.75
Methyl benzene (toluene)	0.021			0.004	1.49
Ethyl benzene	0.019				
1,3-dimethyl benzene (m-xylene)	0.058				
1,2-dimethyl benzene (o-xylene)	0.013				
1,3,5-trimethyl benzene	0.013				
1,2,4-trimethyl benzene	0.007				
2 and 3-methyl pentane	5.8				
(combined areas)		in un/m ³			
methanal		0.03			
othanal		0.03			
		0.025			
propanol		0.03			
propenal		0.03			
		0.03			
		0.025			
butanal+isobutanal		0.04			
		0.03			
pentanal+toluaidenyde		0.04			
nexanal		0.03			
giyoxal		0.025			
metnyigiyoxai		0.03			
metnyipropenal		0.025			
ethylmethylketone		0.03			

Table 3.33: Detection limits and precision of volatile organic carbons, VOC.

* Data form CZ and FI are taken from earlier reports.

Compund	Laboratory detect	ction limit, pg/m ³
Compand	Czech Republic	Norway
PCB 28	2	0.7
PCB 31		0.5
PCB 52	2	0.2
PCB 101	2	0.06
PCB 105		0.01
PCB 118	2	0.05
PCB 138	1	0.05
PCB 153	1	0.05
PCB 153		0.01
PCB 180	1	0.02
alfa-HCH	1	0.1
beta-HCH	3	
gama-HCH	1	0.3
delta-HCH	1	
НСВ		0.8
p,p'-DDE	1	
p,p'-DDD	1	
p,p'-DDT	1	0.01
Hexachlorbenzen	1	
Pentachlorbenzen	1	
tr-kordan		0.08
cis-kordan		0.04
tr-nonaklor		0.02
tr-nonaklor		
PAH (general)		1
Naftalen	5	
Acenaftylen	5	
Acenaften	5	
Fluoren	5	
Fenantren	5	
Antracen	5	
Fluoranten	5	
Pyren	5	
Benz[a]antracen	10	
Chrysen	10	
Benzo[b]fluoranten	10	
Benzo[k]fluoranten	10	
Benzo[a]pyren	10	
Indeno[123cd]pyren	10	
Dibenz[ah]antracen	10	
Benzo[ghi]perylen	10	

Table 3.34: Detection limits and precision of persistent organic pollutants (POP).

* Data form CZ is taken from earlier reports.

Annex 4

Random and systematic errors in the lab intercomparisons

 \checkmark The random errors are given in 2RSD% and the colors code correspond to:

✓ The systematic errors are given in RB% and the colour codes corresponds to:

systematic, i.e. all four samples have either positive or negative error

SO4 prec	1 1077	2	3 1078	4	5 1080	6 1081	7	8 1084	9 1086	10	11	12 1001	13	14 1004	15 1005	16	17 1000	18 2000	19 2001
1 ΔΤ	92	1970	25.1	56	28.2	33	6.8	53	1900	26	1909	1991	0.6	1394	0.8	1 4	1999	2000	2001
2 BE	13.5		23.1	82.1	15.4	0.0	4.6	1.8	4.3	2.0	1.0	1.7	0.0	1.5	0.0	1.4		1.0	0.0
3 (5	10.0		27.6	3.1	27	0 9	9.0 8.1	0.5		11	ng	24	0.2	0.8	05	17	12	07	05
4 DK	23		3.3	4	2.7	2.6	27	11	14	0.9	0.0	0.3	0.2	0.0	0.0	0.2	0.2	0.7	1.5
5 El	13		17	13	1 0	2.0	17	0.7	53	0.5	0.0	17	0.0	1 1	0.4	0.6	1	0.0	0.8
6 FR	3.1		33.5	3.1	3.8	9.2	24	24	0.7	14	5.6	0.9	0.0	0.6	02	27	0.8	0.4	0.0
7 DDLein	0.1		00.0	0.1	0.0	0.2	2.7	2.7	87	2.8	3.8	0.0	0.2	0.0	0.2	0.4	21	8.2	1.6
8 DE	11.6			137	27	54	59	11	14	0.7	14	04	05	0.3	13	0.4	0.4	0.2	0.5
9 GB	16.4			13.7	77	16.3	14.3	5.1	2.1	5.3	1.4	5.6	4.2	0.0	6.5	4.8	2.8	0.7	0.0
10 HU	22.8			23.4	5.6	89	17.3	89	11 9	9.3	16.6	10.2	17	16.9	10.0	17	2.0	0.6	19
11 IS	22.0			2.3	3.8	1.8	3.8	6.0	3.9	22	5.8	0.2	2.3	0.0	15	1.7	2.0	2.3	3
12 IE Met				2.0	29	9.2	21	22	5.2	6	84	5.2	12	14	2.1	0.4	03	0.1	06
13 IT CNR					2.0	0.2	2.1	3.1	17.4	1	1.8	14	5	3	14	0.4	0.0	2.5	0.0
14 NI	1		33	31	12	59	16	15	27	09	1.0	2.6	12	06	1.4	0.0	24	0.4	29
15 NO	49		3.3	2	1.2	1.3	3.3	1.0	0.7	0.5	22	0.8	0.5	0.0	22	24	0.9	2.6	12
16 PL Met	8.9		17.6	72	21.5	3.9	71		0.1	3.9	4 1	59	2	3.3	1.8	0.8	14	19	0.1
17 PT	0.0			22		14.8	4	15	27	9.5	13.6	49	0.8	25.9	1.5	1.3	21	11.8	14
18 RO							•		15.1	0.0			0.0		19.8	14 7	5.6	25.4	8.8
19 FS									0.9	1		12	28.9	39	2.6	27	5.6	4	1.6
20 SE IVI	74		75	47	23	76	46	15	37	17	03	0.7	29	0.4	23	8.8	1.5	24	4.8
21 CH	1.3		1.7		1.9	1.8	1.9	2.5	4.3	0.8	1.3	0.4	0.1	0.4	0.5	0.1	4.5	1.6	0.6
22 SOV/RU				20.5	393.8			8.9	3.2	2.6	3.6	0.5	1	4.1	2.6	2.5	0.2	3	4.1
23 GB	4.5		6.7	2.3	1.9	5.2	4	1.6	0.9	0.5	0.8	1	1.4	1.6	1.1	4	7.5	0.4	1
24 YU				13.7	21.5	2.8	12.5	4.5	3.6	5.7	10.7	1.9	9.7	8.5	9	7.8		6.8	
25 SE SNV									1.4	1.9	1.5						0.5		
26 CA AES	24.5		110.5	2.3	1.9	2.2	1.1		2	1.9	0.5	0.4	2.4	1	0.6	1.6	0.6	0.7	0.9
27 US ILL.								1.8	0.4	1.2	1.1	0.2	0.8	0.6	0.4	0.3		0.2	0.4
28 US EPA								0.7	0.4	0.3	1.9	0.4							
29 CA CONC.									1.6	3.9	3						0.6		
30 IT ISPRA										0.7	1	0.6	0.4	0.5	0.2	0.4	0.8	1.1	0.5
31 SK												6.5	2.6	5.8	2.5	0.6	1.7	0.4	0.6
32 LT													8.6	6.8	4.4	2.2	11.2	2	
33 LV													5.9	11.5	12.7	2.2	2.1	3.7	0.9
34 TR													3.7	0.8	0.7	1.4	25.7	2	1
35 HR													9.8	5.8	4.9	1	0.9	0.6	0.5
36 SI													11.6	5.4	2.1	0.3	2.5	1.1	1.3
37 IE EPA/EBS								2.4						11.7	2.1	0.9	3.7	6.6	
38 EE														6.6	21.3	2.9	2.4	1.5	2.2
39 PL (Env.)															4.7	3.5		20.2	1.8
40 MK																			
Gml. 19 TNO				6.7	21.1	0.4	3	3.3											

Table 4.1: Random error (2RSD%) for SO₄ in precipitation, in the different laboratory intercomparisons.

SO4 prec 1 2 3 4 5 6 7 8 9 10 11 12 13 14	15 16 17 18 19
19// 19/8 19/8 19/9 1980 1981 1982 1984 1986 1987 1989 1991 1993 1994 19	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.1 1.1
2 DE -11.3 44.0 30.0 4.1 2.0 -4.1 -2.9 2.7 2.3 2.1 2.3 2.1 2.3 2.1 2.3 2.1 1.2 1.0 1.0 0.7 1.0 1.0 0.7 1.0 1.0 0.7	
-2.2 -2.2 -0.7 -1.4 -0.2 -1.1 -1.2 -1.0 1.0 0.7 -1.0 -2.2	1.7 -1.4 -0.4 -0.0 -1.5
+ DK = -3.5 = -1.5 = -2.7 = -1.0 = -4.2 = -4.2 = -1.0 = -4.2 =	1.1 0.0 -0.3 -1.5 0.0 13 14 0.6 0.4 11
	1.5 1.4 0.0 0.4 1.1
	1.3 0.0 1.7 -0.2 -1.0
	3.1 - 0.3 - 0.6 - 1.5 - 0.8
9 GR -30 -148 565 -133 -105 165 26 05 -200 187 -36 -1	19 -31 193
10 HU -37 -771 -94 -143 72 -287 15 -467 -318 -122 118 -14	43 61 -21 15 -08
11 IS 22 47 -14 -02 194 57 -86 -32 29 71 13 -1	12 -25 -18 -10 14
12 IE Met -0.9 -12.7 6.6 -0.7 -0.2 -12.3 -10.3 -19.7 -4.7 -2.0 -7	7.6 -1.8 -0.4 -0.2 -0.5
13 IT CNR -0.4 1.3 -3.8 -1.4 2.2 11.6 4.9 2	2.0 3.2 -1.0 2.9 5.9
14 NL -1.2 1.0 -1.8 2.1 -0.7 0.2 1.6 -4.6 -1.8 3.0 8.5 0.3 -0.2 -3	3.3 0.2 -3.7 -0.6 0.2
15 NO 1.6 6.2 -2.9 -2.4 -2.5 4.1 -1.1 2.2 -2.1 5.0 1.4 0.3 3.9 -5	5.7 -3.2 -2.4 -4.9 -4.1
16 PL Met. 1.3 25.6 0.0 13.6 7.7 -1.0 -9.1 2.8 -6.4 7.6 -4.1 -5	5.0 -0.8 -2.0 1.3 -2.1
17 PT 8.2 -11.5 -11.1 2.0 0.2 -61.9 -16.0 12.4 -0.3 -5.1 -5	5.4 -1.7 -12.4 4.4 6.8
18 RO -71.5 -48	3.3 1.2 -6.1 99.5 7.8
19 ES 0.2 -2.3 -15.6 0.2 -0.9 5	5.7 3.0 3.5 -5.4 1.1
20 SE IVL 3.0 -4.1 -3.1 -0.2 16.7 7.8 1.8 -2.0 35.0 -1.0 0.5 4.2 -1.0 2	2.4 4.7 3.0 -6.0 -15.5
21 CH -1.6 -3.1 <u>0.0</u> -1.4 -1.6 -7.6 -6.8 2.5 0.4 0.4 0.6 0.6 0).5 1.2 -1.8 2.9 1.4
22 SOV/RU	1.4 0.0 0.7 -9.8 0.7
23 GB -6.6 -5.1 -3.1 -4.7 -0.2 -2.5 <u>2.0</u> 1.5 1.1 1.7 3.9 4.7 3.6 2	2.8 -1.8 10.8 1.5 -0.4
24 YU 0.7 3.5 17.9 -17.3 33.0 3.5 -61.7 40.5 3.8 -15.2 31.4 5	5.9 0.55.4
25 SE SNV -3.3 4.2 0.5	-1.4
26 CA AES 0.6 181.5 4.4 -7.8 -17.6 2.3 0.7 -3.7 -2.8 -1.2 -4.4 -1.2 -1	1.5 -4.7 1.6 -1.6 -2.5
27 US ILL3.1 2.8 5.8 1.4 1.5 1.7 0.4 0).3 0.4 0.5 -0.5
28 US EPA 0.4 1.5 -1.6 4.5 1.7	-
29 CA CONC1.3 -1.8 -12.7	1.4
30 II ISPRA -0.7 0.2 -0.7 0.8 -0.1 -1	1.1 -0.3 1.2 2.4 -0.2
-3.1 -1.2 -0.3 3	3.7 - 4.5 - 5.9 - 1.0 - 1.2
	3.8 - 7.9 8.4 - 6.4
33 LV	
34 ITC 1.2 -2.9 -3	1.0 12.9 1.4 0.1
	1.0 -14.7 -1.0 -0.1 1.8
30 51 12.1 0.0 -1	1.2 - 2.1 0.0 0.0 - 1.5
	-45 20 22 -0.4
39 PL (Env.)	18 08 188 61
40 MK	
Gml. 19 TNO -11.0 -16.5 -1.8 5.4 18.9	

Table 4.2: Systematic error (RB%) for SO_4 in precipitation, in the different laboratory intercomparisons.

	NO3 prec	1 1977	2 1978	3 1978	4 1979	5 1980	6 1981	7 1982	8 1984	9 1986	10 1987	11 1989	12 1991	13 1993	14 1994	15 1995	16 1997	17 1999	18 2000	19 2001
1 2	AT BE	3.7 4.8		23.9	5.6 7.6	8	5.2 15	4.7 4.7	3.2 1.6	11.5 7.7	4.7 3	2.6 1.5	1.4 1.7	0.6	0.7	2.4	0.4		0.9	1
3	CS DK	29		14.4 4 2	2.8	1.8 4.3	5.7 3.1	3.6 2 1	1.1 1.6	1.6 1 1	0.9 0.9	0.5 2.6	1.3 0.4	0.6 1	0.7 1 4	0.9 0.6	0.4 1.2	0.4 1.8	0.4 1.6	0.8 1 1
5	FI	2.0		ч. <u>с</u>	10.4	1.8	3.6	1	1.6	2.7	8.5	0.6	1	1.1	0.5	0.7	0.6	0.7	0.3	1
6	FR DD	10.1		4.6	1.4	10.4	1.6	2.6	2.7	7.7 3.3	0.4 2.6	0.8 15.3	0.9	2.8	0.4	0.7 0.7	0.6 0.8	0.9 3.9	0.9 1.1	0.5 0.9
8 9	DE GR	335_				1.8	3.1	4.1	2.7	1.6	0.4 9.3	0.5	0.6 2.5	0.6 7.8	0.7	2.2	0.4 9.6	0.3 0.4	0.9	0.8
10	HU	13.8		9.9	5.6	1.8 6.8	6.7	5.7	1.1	61.4	6.3	2.6	5.4 1.8	4.7	2.5	2.7	2.4	4.5	1.6	1.4 3.6
12						0.0					5.4	5.5	3.2	0.6	0.7	1.5	1.2	1.0	1.2	0.4
13 14	II CNR NL	1.8		21.1	6.3	4.9	6.3	1.6	4.3 2	7.7 0	2.6 1.6	1.8 0.5	8.1 0.7	0.6 1.2	1.7 4.3	1.5 2.2	0.8 0.5	0.3 0.9	2 0.8	2.7 1
15 16	NO PL	6.8 5		4.2 8.4	2.1 4.2	1.8 17.2	5.7 6.7	1.6 4.7	0.5	0.5	0.7 5.8	2.7 2	0.8 4.8	2.9 2.9	0.8 1.7	2 2.2	0.6 0.8	2.2 1.9	2.2 0.3	1.5 0.3
17	PT PO								2.7	3.3	19.5	11	19.1	0.7	1.1	3.7	1.8	1.4	0.9	1
19	ES			05.0		~ -		o -	.	1.6	3.2		0.4	0.5	0.5	1.1	2.2	4.5	4.8	1.5
20 21	CH	8.6 11		35.2 2.8	42.4	3.5 3.1	5.9 8.3	6.7 4.1	2.1 1.6	2.2 8.8	5.2 0.4	0.2	0.4 1.4	0.6	0.4 0.8	0.6	0.3	1.3	0.7	0.8 0.6
22 23	RU GB	34.9		7	3.5	2.5	3.6	3.6	4.8 0	6.6 2.2	5.4 0.4	2.6 0.2	0.8 0.2	0.6 1.7	5.7 3.1	2.2 2.6	4.8 2.2	4.9 0.5	3.1 3.8	4.7 0.9
24 25	YU SE SNV				13.9	16.6		10.4	9	7.7	11.8 1.5	16.5 2	5	5.8	4.9	2.1	8.1	3.2	19.2	38.8
26	CA	18		1.8	0.7	3.7	0	4.7	0.0	1.1	1.5	0.8	0.1	0.6	1.1	1	1.5	0.7	1.3	0.8
27	US-E								0.2	0.5	0.5	1.4	0.9	1.1	0.0	1.3	1.2	0.9	0.0	0.0
29 30	CA CONC. IT ISPRA									3.8	4.7 1.3	3.4 1.5	0.9	0.6	0.7	2.2	0.4	0.5	0.4	1.5
31 32	SK I T												2.5	2.6 3.6	1.6 1	0.6 3.5	2 22	1 03	1.8 1.2	1.7
33	LV													3.4	6.9 0.4	6.3	8.9	5.7	1.2	0.6
34	HR													1.7	2.7	1.7	1.2	9.7	2.3	1.2
36 37	SI IE (EPA)													1.2	4.6 1	2 2.2	0.4 1.3	1.1 1.8	2.6 27.7	1
38 39	EE PL (Env.)														7	3.1 4.4	1.8 2.6	2.9 1.2	1.1 3.5	10.6 2.3
40	MK EE Tartu																6 1	5.8	10.8	8.1
41	IS Ork																0.4			
Gml. 19	NL INO					8.6	3.6	3.6	5.9											

Table 4.3: Random error (2RSD%) for NO_3 in precipitation, in the different laboratory intercomparisons.

	NO3 prec	1 1077	2 1978	3 1978	4 1070	5 1980	6 1981	7 1982	8 1984	9 1986	10 1987	11 1989	12 1991	13	14 1994	15 1995	16 1997	17 1000	18	19 2001
1	AT	67	1370	-29.3	68	9.0	-4.4	-8.3	3.3	-11 4	24	-0.3	-5.1	2.5	12	5.0	-4.0	1333	1 7	10
2	BE	4.5		20.0	-0.9	0.0	-12.1	2.5	4.6	0.0	-5.8	0.4	-6.8	2.0		0.0	1.0			1.0
3	CS			-4.1	0.9	9.0	-3.8	-3.8	-1.3	2.0	0.3	-1.1	1.1	0.8	0.6	-2.5	0.3	-1.9	-3.0	-4.5
4	DK	-1.3		-3.4	-10.2	-5.3	-1.3	0.0	-0.7	-0.7	0.5	-4.6	-3.9	1.2	-3.1	0.6	-1.8	2.0	2.5	0.6
5	FI					0.8	2.5	3.8	-1.3	-2.7	1.5	-4.9	-1.0	3.5	1.7	-2.3	2.2	0.4	1.0	1.4
6	FR	-9.0		-4.8	-0.9	-2.3	1.3	3.2	-2.6	6.7	0.2	-2.5	1.5	1.0	0.4	0.9	-2.7	0.2	-0.7	-2.0
7	DD					_				-2.8	-4.6	17.3		_		-2.0	0.3	-7.1	-4.3	-3.7
8	DE	234.6				3.8	0.6	-1.9	6.5	0.7	2.2	1.7	0.5	-0.4	-0.7	-9.7	1.1	2.4	-0.8	0.2
9	GR			10.0					o -	10.1	8.0		-5.8	-4.8		10.0	-14.2	-1.6		
10	HU	11.2		13.8	4.3	2.3	6.3	7.6	6.5	-10.1	5.8	3.3	-0.9	-9.6	9.2	-12.6	4.0	-1.4	0.9	-1.4
11	IS					0.8					5.0	-10.4	2.9	-2.5	-0.4	3.4	-2.0	0.2	4.0	10.4
12									10	4.0	-5.3	-0.3	-3.8	-0.4	-0.7	-0.9	-0.5	<u> </u>	-1.8	0.2
10		0.2		17	10.2	120	12.2	5 1 –	1.5	-4.0	0.5	-2.7	-0.0	0.1	1.Z 5 1	1.0	1.5	-2.3	4.4	1.0
14		-7.4		-5.2	-3.4	0.0	9.5	10.2	-4.0	-1.3	0.9	-1.0	1.0	-1.1	-5.1	-1.0	_1 0	-1.2	-0.0	-1.0
16	PI	6.1		-5.2	5.1	-15.8	-5.7	7.0	0.7	0.0	-10.9	0.4	-9.7	-53	13.2	-8.6	-2.7	-3.8	-0.0	-3.0
17	PT	0.1		0.2	0.1	10.0	0.7	1.0	-4 6	10 1	-78.3	-10	18.6	-1 1	-2.9	-8.4	1.9	-2.6	3.0	3.6
18	RO									-16.8						20.4	-81.4		-16.9	0.0
19	ES									2.0	2.6		-1.5	-3.2	-0.7	0.9	4.8	-2.4	-2.9	3.9
20	SE IVL	-9.4		-3.4	-9.4	2.3	5.0	1.9	1.3	-2.7	18.5	-1.7	0.9	2.4	2.2	-0.9	0.6	0.6	1.0	1.0
21	CH	-3.4		-1.7		-1.5	4.4	-1.3	-3.9	-10.7	2.5	1.3	0.2	1.0	0.6	0.2	1.2	-0.1	0.1	-0.5
22	RU								-10.4	6.7	-3.3	-3.2	-4.8	-3.7	5.2	1.6	6.2	-0.1	-5.0	-1.6
23	GB	-6.7		-8.6	1.7	-1.5	-0.6	8.9	-2.6	0.0	0.2	2.6	1.6	3.1	3.3	6.5	-3.6	1.9	-1.1	-0.5
24	YU				-3.4	6.0		-12.7	-8.5	3.4	-38.0	-1.4	-1.0	-29.3	-12.4	17.9	-28.8	-7.9	3.4	134.0
25	SE SNV				_			_		-1.3	3.1	-1.0		_			_			_
26	CA	-0.9		-1.9	-1.7	-3.8	0.0	-8.3		-0.7	-3.3	-1.7	-3.7	-1.8	-2.3	0.3	-4.6	-0.9	-1.4	-2.1
27	US-I								-0.1	2.7	2.2	-0.3	2.7	3.1	2.0	2.3	1.2	0.9	1.4	0.2
28	US-E								1.3	0.3	-1.4	0.5	-0.9							
29	CA CONC.									2.7	0.7	21.9					_		_	
30	IT ISPRA										-1.2	1.9	0.2	-0.4	-0.3	-1.8	-2.4	1.0	0.7	-0.1
31	SK												-6.3	6.2	-2.3	1.6	-14.3	-0.3	1.4	-1.4
32	LT													-3.7	0.9	7.4	0.9	1.4	-3.8	
33	LV													-7.5	-19.1	9.9	3.0	-12.2	-2.8	-0.6
34	TU													-1.3	-2.8	-4.8	0.0	0.9	-1.8	-0.6
35	HR													-0.4	6.4	2.0	-1.6	6.4	0.0	0.8
36	SI													8.1	4.1	-2.1	-1.7	-2.7	-1.7	-2.5
37	IE (EPA)														0.3	-3.4	-2.8	4.3	-0.8	
38	EE														-0.3	2.3	1.0	5.9	3.4	-16.0
39	PL (Env.)															-1.4	5.3	1.8	11.1	3.5
40	MK																	-32.5	14.1	46.8
41	EE Tartu																10.7			
42	IS Ork																-4			
Gml. 19	NL TNO					7.5	-5.1	1.3	-0.7											
Gml. 25	IE ESB Dul	bl																		

Table 4.4: Systematic error (RB%) for NO_3 in precipitation, measurements in the different laboratory intercomparisons.

NH4 prec	1 1977	2 1978	3 1978	4 1979	5 1980	6 1981	7 1982	8 1984	9 1986	10 1987	11 1989	12 1991	13 1993	14 1994	15 1995	16 1997	17 1999	18 2000	19 2001
1 AT 2 BE	26.0 26.0		23.3	19.0 21.5	19.2 7.0	12.5 20.9	2.8 6.7	15.6 3.4	26.9 11.4	8.4	38.4 5.7	5.3 4.0	2.9	2.3	3.6	4.0	1000	3.0	0.3
3 CS 4 DK	13.6		13.1 18.1	1.9 3.7	3.2 3.5	2.6 17.2	2.0 1.6	5.4 4.8	0.6 3.0	1.2 1.2	1.5 6.0	3.1 4.0	1.1 1.7	2.7 2.8	4.7 0.9	2.9 0.4	3.9 1.5	2.9 1.1	1.6 0.8
5 FI 6 FR 7 DD/DE (Lein)	17.4		5.8 25.4	<mark>15.8</mark> 13.3	2.3 9.0 <mark> </mark>	10.7 30.6	1.6 11.1	2.7 40.8	3.0 9.0	0.7 10.4	2.3 6.8	0.9 7.8	0.3 7.8	0.9 2.9	2.8 1.2	0.4 0.8	2.1 6.3	1.4 1.1	1.1 5.0
7 DD/DE (Leip.) 8 DE 9 GR	9.7					1.9	12.7	1.6	3.0 1.2	1.4 1.8 13.9	4.5 4.4	1.9 12 0	1.0 2.0	1.5	5.1 4.4	4.0 1.7	0.8 1.4 5.7	1.0	0.9 0.9
10 HU 11 IS	20.6		65.6	10.8	11.6	7.0	2.8	13.6	15.6	1.5	6.8 3.1	26.2 9.7	2.0 2.9 1.5	11.3 3.5	9.4 3.6	4.0 2.5	3.5 4.2	1.0 7.9	0.1 1.8
12 IE Met, serv 13 IT CNR								7.5	31.1	4.4 15.4	5.7 7.9	3.9 <mark>19.4</mark>	1.9 2.9	1.6 6.8	3.6 17.0	2.5 4.8	0.5	3.9	39.7 4.1
14 NL 15 NO 16 DL Mat	1.0 10.9		33.5 8.7	7.6 4.4	4.6 1.2	7.5 3.7	1.2 8.7	1.4 8.2	2.4 3.0	0.3	2.3	12.6 4.9	1.0 1.9	1.6 0.8	2.0 2.6	0.9 0.1	2.6 0.8	2.3 5.9	0.4 0.0
17 PT 18 RO	2.0		20.4	7.0	2.9	10.2	9.1 12.3	2.0	1.2 11 4	5.4 6.3	21.5	4.9 7.8	5.6 1.9	29.3	2.4 5.1 12.6	4.1 0.6	2.4 1.1 4.4	2.0 2.4 5.3	3.9 3.0 17.3
19 ES 20 SE IVL	4.6		11.7	24.7	3.8	3.7	1.9	0.7	<mark>19.7</mark> 0.5	5.6 3.0	1.1	<mark>15.4</mark> 1.9	3.9 1.0	4.4 2.9	10.3	5.7 0.3	2.3 1.8	1.0 0.6	0.5 0.6
21 CH 22 SOV/RU	10.2		122.2		8.7	6.5	8.3	10.2 40.1	6.0 4.2	2.1 16.3	4.5 3.4	0.1 5.8	2.9 0.8	3.1 8.4	3.2	0.5 1.7	0.9 3.5	1.8 5.7	0.7 0.5
23 GB 24 YU 25 SE SNV	3.6		8.7	13.3 27.8	2.3 6.4	13.0 1.9 <mark> </mark>	6.7 16.2	4.1 57.8	7.2 3.0 1.8	0.8 6.3 2.4	2.3 14.1 9.0	9.7 6.7	1.0 13.0	3.1 7.4	8.3 4.7	2.8 0.1	1.0 9.1	0.9 3.8	0.8 4.7
26 CA AES 27 US ILL. 28 US EPA 29 CA CONC	18.0		12.5 <mark>-</mark>	20.9	9.1	8.4	13.5	1.6 1.4	1.7 1.8 2.1	0.3 1.9 0.8	9.0 2.1 4.5 1.1	3.1 1.1 4.1	2.7 1.0	1.7 3.8	2.3 2.0	0.5 0.9	1.9 2.1	0.6 2.1	0.7 2.0
30 IT ISPRA 31 SK 32 LT 33 LV 34 TR 35 HR										1.5	3.4	10.7 3.9	1.9 1.3 2.0 2.9 1.7 5.8	0.8 4.5 4.4 0.8 2.6 6.0	5.9 4.2 5.9 8.3 2.4 3 8	0.7 3.3 1.0 6.6 1.1 2 1	1.0 7.2 2.0 1.0 1.6 1.6	2.0 3.2 2.5 3.3 1.5 1.9	1.6 3.4 2.6 1.3 3 4
36 SI 37 IE EPA/E 38 EE 39 PL (Env.) 40 MK 41 Estonia (Tartu	BS												3.9	3.7 1.6 2.2	2.6 3.1 1.8 4.7	0.6 0.8 3.3 1.6	0.4 2.1 1.0 0.6 3.1 0.5	1.7 23.5 4.0 1.5 16.8	0.9 2.0 2.5 5.3
42 Iceland (Ork.) Gml.19 TNO				3.2	5.8	8.8	2.0	4.1									0.9		

Table 4.5: Random error (2RSD%) for NH_4 in precipitation in the different laboratory intercomparisons.

	NH4 prec	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	ΛТ	1977	1970	7 1	1979	1960	1901	1902	1904	1900	1907	1969	1991	1993	1994	1995	57	1999	2000	2001
2		1.2		7.1	4.7 5.4	2.1	25.0	-4.4	4.2	28.6	-11.1	12.7	-0.4	9.5	-1.2	-1.0	5.7		-0.0	-1.5
2	CS	1.5		36.4	0.4	2.1	4.0	-1.1	7.5	20.0	-9.2	-12.7	9.5	0.2	13	3.0	0.0	1/ 8	53	0.5
4		-15		-30.4	-0.6	93	16.5	-5.4	0.0	-2.2	J.7 4 Q	-5.0	-4.0	27	0.6	2.8	11	0.1	-3.3	-9.5
	FI	-1.5		-7.1	17.8	2.5	7.4	0.5	-4.2	-1.5	-0.8	-3.0	-4.0	-3.2	-7.5	-2.0	-0.2	2.8	_1.8	-0.5
6	FR	-22		-7.5	-0.8	89	-3.4	5.8	30.0	73	-0.0 Q Q	-25.2	-0.2	21.1	12.7	-15.5	-0.2	2.0	-2.6	83
7	DD/DE (Lein)	2.2		1.0	0.0	0.0	0.4	0.0	00.0	1.0	4.8	0.8	0.7	21.1	12.1	10.0	44	18 -	18 -	0.0
8	DF	19					-17	-30.0	-67	-5.1	-2.5	-4.3	-7.5	-14	-5.0	-5.8	47	-1.2	2.6	-4.5
9	GR	1.0						00.0	0.1	0.1	-117	1.0	-8.2	12.9	0.0	0.0	64.8	-27	2.0	1.0
10	HU	-30.4		-8.9	34.1	-14.9	-6.8	-4.8	-10.8	-25.6	-6.9	-4.4	-31.2	16.4	-6.6	3.8	14.8	9.1	-12.4	-3.6
11	IS			0.0			0.0				0.0	-0.6	-2.7	0.7	-3.1	2.6	0.4	7.4	-0.2	-0.5
12	IE MetServ										8.4	-1.7	-2.7	6.9	-3.0	-1.0	-2.3		•	-11.2
13	IT CNR								-10.0	3.7	34.5	-3.0	2.0	16.4	-13.3	-14.5	22.6	0.1	13.8	0.1
14	NL	1.4		-41.1	0.0	7.1	-9.1	-1.0	-4.5	-7.3	1.7	1.1	-2.7	2.1	-4.0	1.5	-1.3	-4.2	-4.4	-4.0
15	NO	2.2		-10.7	5.4	-3.6	1.7	11.6	8.3	-2.9	-5.0	-3.0	-6.2	14.0	5.4	-7.4	-0.3	1.9	-5.2	-2.7
16	PL Met.	-1.1		-49.6	-7.8	1.4	-4.5	-9.7			-27.7	-47.4	-19.2	4.5	-2.1	1.9	-1.6	1.5	-1.4	2.6
17	PT							28.1	2.5	-1.5	-7.5	-26.6	2.0	5.7	9.5	-9.4	3.5	3.7	1.7	-10.6
18	RO									-44.0						-41.0	-20.1	0.6	-25.5	-68.7
19	ES									47.6	23.4		-12.1	-3.8	-24.3	-26.1	-7.6	3.8	5.5	-8.8
20	SE IVL	1.9		-14.3	18.6	0.8	-2.0	4.1	0.7	-4.5	13.4	-0.3	0.8	7.4	1.4	0.0	2.2	-3.3	-2.4	-0.1
21	СН	5.0		-35.7		15.7	-13.1	3.9	18.3	-4.4	0.8	-1.7	-2.6	5.7	-1.2	2.9	-1.9	1.8	0.1	2.1
22	SOV/RU								-51.7	-4.4	1.8	-4.4	-9.9	-9.7	-9.1		-2.4	-4.7	0.8	-2.7
23	GB	1.7		-32.1	3.9	0.7	8.5	-1.0	-2.5	<mark>-19.8</mark>	0.2	1.1	4.4	9.3	0.6	7.7	<mark>-18.1</mark>	-3.1	-0.2	-1.6
24	YU				6.2	4.3	-2.3	-11.1	-1.7	-6.6	17.0	-5.0	-8.5	7.4	-20.5	24.8	14.9	-3.1	1.6	-19.1
25	SE SNV		_					_		0.7	2.4	-5.8	_							_
26	CA AES	-16.4		-42.5	-5.0	0.2	1.2	-6.8	_	-5.1	2.4	-2.4	-4.7	0.1	-1.9	0.6	-1.7	1.5	-1.0	-0.9
27	US ILL.								-4.9	-7.3	3.5	-0.3	-7.4	-1.4	-3.0	0.0	-0.3	-4.1	-7.4	-6.3
28	US EPA								-7.5	-5.6	-0.3	-8.7	-5.6							
29	CA CONC.																			
30	IT ISPRA										-3.5	-0.3	-5.1	-0.2	-7.7	-1.0	-1.0	2.3	2.0	0.6
31	SK												-11.0	12.5	-22.0	10.3	1.0	12.0	-1.8	-3.8
32														5.8	-13.1	0.4	2.9	8.8	0.6	4.0
33	LV													5./	3.5	4.8	5.7	-5.4	5.6	1.9
34														10.0	1.0	-3.7	0.7	-0.1	1.4	2.0
30														-13.3	13.0	-3.9	21.8	0.5	-0.7	-0.1
30														10.4	20.0	10.0	1.3	2.2	-1.0	-0.1
20															-2.1	12.3	4.2	-0.5	0.0	20
20															1.1	7.7	-1.3	4.9	2.2	-3.9
39 29																1.1	1.0	-2.9	2.0	9.4
+0 ⊿1	Fetonia (Tartu)																	0.7	00.0	1.0
-+ i ⊿2	Iceland (Ork.)																	37		
Gml 10					31	-12.8	-63	-1	-75									0.1		
Jini. 19					0.1	12.0	-0.5	- 1	-1.5											

Table 4.6: Systematic error (RB%) for NH_4 in precipitation in the different laboratory intercomparisons.

K prec	1 1977	2 1978	3 1978	4 1979	5 1980	6 1981	7 1982	8 1984	9 1986	10 1987	11 1989	12 1991	13 1993	14 1994	15 1995	16 1997	17 1999	18 2000
1 AT 2 BE										40.1		0.8	3.3	3.0	4.6	3.5		2.9
3 CS								2.4	3.5	12.0	1.2	13.1	1.0	1.8	0.6	4.6	3.6	4.8
4 DK 5 FI								24	18	1.1	0.0 4 0	1.5	2.1	0.0 2.3	0.0 4.2	1.0	3.0	1.9
6 FR								18.3	96.6	17.1	2.8	1.4	2.6	0.7	3.6	1.6	2.3	2.9
7 DD/DE Lei									10.5	4.9	7.6				2.4	0.7	2.8	2.7
8 DE								1.2	1.8	0.7	1.9	1.3	1.8	7.3	2.2	1.6	12.8	3.9
9 GR 10 HU								12 2	35.1	78	13 5	116	22.7	30.2	217	29.5 8.2	3.7	172 4
11 IS									00.1	2.5	14.7	3.3	2.1	11.0	2.6	5.9	54.3	6.8
12 IE MetServ										4.8	4.0	1.5		2.1	2.6	1.5	_	
13 IT CNR								6.1	14.0	4.0	21.6	18.6	3.0	8.9	14.4	10.3	0.9	1.9
14 NL 15 NO								11.0	0.0 12.3	2.7	2.8	4.8	2.6	8.0 2.7	3.4 1.0	8.4	7.9	3.9 11.2
16 PL Met.								4.5	12.5	4.3	9.0	2.6	2.6	7.1	6.4	1.6	0.0 5.7	9.7
17 PT										60.9	30.6		3.9	27.9	4.2	1.3	0.9	8.1
18 RO								_	17.6	40.0		· ·	47.0	00.0	7.4	13.4	50.0	
19 ES 20 SE 11/1									33.4	12.0	12	14.5	17.2	33.6	7.6	4.2	0.6	2.9
20 SE IVE 21 CH								97	28.1	5.3	4.3 6.4	2.6	1.0	43	2.4	4.0	7.5	12.0
22 SOV/RU								•	5.3	16.6	25.6	10.4	2.6	180.0	7.2	9.9	12.6	43.4
23 GB								_	1.8	4.4	3.1	5.6	1.9	16.2	11.6	10.6	1.1	1.2
24 YU									36.9	4.9	3.1	3.5	17.1	4.3	9.8	1.8	7.5	5.2
25 SE SINV 26 CA AES									1.0	9.1	2.1	10	18	27	20	05	13	27
27 US ILL.								2.1	5.4	0.8	2.1	3.0	9.0	1.1	1.4	0.7	0.8	0.6
28 US EPA								3.7	1.2	4.6	2.8	1.3						
29 CA CONC.										2.0	4.0	0.4	2.0	7 5	1.0	0.4	0.0	4.0
30 II ISPRA 31 SK										3.8	4.0	2.1 11 3	3.9 13	7.5 9.8	1.8	3.1	0.0	4.3
32 LT												11.5	12.5	6.6	4.6	4.0	5.8	12.2
33 LV													4.0	6.6	10.6	2.7	2.1	2.3
34 TR													4.3	1.8	6.0	3.7	2.1	33.1
35 HR													5.5	22.4	4.4	1.6	1.9	6.8
37 IF FPA/FBS								37					10.0	49.6	72	33.9	6.2	2.7 9.9
38 EE								•						27.7	20.3	4.2	5.5	1.9
39 PL (Env.)															1.0	1.3	0.6	0.8
40 MK																4.0	23.8	18.0
41 EE (Tattu) 42 IS (Ork.)																1.0	5.0	
Gml. 19 TNO								2.4										

Table 4.7: Random error (2RSD%) for K in precipitation in the different laboratory intercomparisons.

19 2001 8.0

1.7 6.8 9.1 1.6 2.9 1.6

8.2 7.2 2.7 1.0 2.3 3.7 4.7 5.6

4.3 5.6 9.7 8.4 4.1 3.7

1.0 4.3

1.7 2.5

3.7 13.2 2.9 1.6

3.7 0.8 19.2

K prec	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
	1977	1978	1978	1979	1980	1981	1982	1984	1986	1987	1989	1991	1993	1994	1995	1997	1999	2000	2001
1 AT												-2.5	0.1	0.8	-16.5	-2.5		-13.2	-2.1
2 BE										30.4						a -			~ .
3 CS								0.0	2.2	-4.7	-1.7	4.1	-1.3	-1.7	0.7	-6.7	-3.0	1.5	-2.1
4 DK								4 5	4 0	-1.3	-7.6	-1.8	3.9	-2.0	-18.9	-4.7	-12.7	-6.8	-11.2
5 FI								-1.5	4.3	1.0	-2.9	-1.8	-1.6	-1.1	0.5	-5.8	-4.6	-0.5	-8.1
								20.9	08.8	-7.8	9.9	-11.8	-5./	-2.0	-0.9	-22.0	-3.2	7.1	-7.4
								A E 📕	-17.2	1.1	2.3	70	76	0 0 –	-11.0	-1.0	-3.9	-3.0	-2.9
								4.5	0.0	0.2	-1.7	-1.2	-7.0	-2.2	3.2	-0.2	-9.7	-0.0	-0.7
								52.2	710	20.4	62.7	16	92.0	76.9	12.2	209.0	-10.4	3.0	10 1
11 19								-32.2	71.0	-29.4	8.1	-4.0	_1 0	25.5	3.2	_3.1	-11.5	-0.0	6.4
12 IE MotS	Sony									-0.9	3.8	-1.5	-1.5	-12.6	-16.5	-15.2	-24.2	00.5	-7.6
13 IT CNR								10 4	19.4	0.2	-5.5	-1.7	18.6	7.0	1.0	1.3	-12	-18	-5.0
14 NI								16.4	-4.3	4 1	-3.5	1 1	1.6	0.3	-4.9	0.0	-0.2	6.6	-21
15 NO								0.0	28.0	4.5	0.9	-49	15.7	0.6	-2.5	-1.8	0.2	22.3	0.7
16 PL Met.								0.0	_0.0	2.9	-19.2	-14.4	-7.7	9.2	-3.9	-0.4	-5.8	-18.5	-8.8
17 PT										67.4	52.6		-18.0	6.2	-13.0	0.4	-7.9	-38.2	40.0
18 RO									-38.7						25.1	34.8	106.0		
19 ES									-4.3	24.7		31.8	49.2	54.1	54.5	-0.4	5.3	1.5	-5.0
20 SE IVL									-21.5	-4.2	1.2	1.0	-6.1	14.3	0.5	20.2	25.2	8.4	-11.2
21 CH								9.0	28.0	-3.2	-4.9	-1.8	4.1	3.1	1.0	5.6	-9.7	-16.5	-10.5
22 SOV/RU									-17.2	13.6	28.5	-5.8	-18.2	93.8	-9.8	27.6	6.9	17.5	6.7
23 GB									17.2	-5.5	-14.8	11.1	-14.7	-16.5	2.9	0.2	-5.1	-3.5	-10.5
24 YU									-86.0	-19.6	-3.2	15.0	-19.1	-7.0	-21.6	2.9	-10.2	-5.8	-7.6
25 SE SNV	1								-2.2	3.9	6.1								_
26 CA AES									4.3	0.6	2.3	-0.3	-1.7	4.8	2.2	-2.0	-0.9	0.3	4.5
27 US ILL.								-1.2	3.0	0.2	7.6	-8.6	1.0	3.4	0.5	-1.6	0.7	0.8	-4.0
28 US EPA								0.0	2.8	-3.3	-9.6	4.6							
29 CA CON	IC.									I		-							a a 📕
30 II ISPF	R									-2.7	-42.7	2.5	-7.9	12.0	-4.7	-3.1	3.9	-6.8	-8.8
31 SK												5.5	0.7	11.2	15.5	-4.9	28.4	2.3	-2.9
32 LI													14.3	19.9	-14.0	13.9	-1.2	-11.1	4.0
33 LV													-4.5	0.4	3.2	0.5	-4.8	-4.8	-4.0
34 IK 25 UD													0.0	U.Ŏ	0.4 11 0	-4.9	-0.9	440.0 5 1	11.0
30 TK 36 SI													<u>21./</u> 17.7	40.5	-11.0	-2.9	0.7	0.1	-4.0
30 31 37 IE EDA								-3.0					-17.7	-1.4	2.2	1/1 3	-0.7	-4.0	1.0
38 FF								-5.0						12.0	-26.3	-14 1	-76	-1 8	07
39 PL (Env.)														12.0	0.0	-0.4	-0.2	0.0	-12
40 MK															0.0	0.7	59.6	-24.8	-49.0
41 EE (Tartu)																1.0	00.0		10.0
42 IS (Ork.)																			
Gml. 19 TNO								0											

Table 4.8: Systematic error (RB%) for K in precipitation in the different laboratory intercomparisons.

Ca prec	1 1977	2 7 1978	3 1978	4 1979	5 1980	6 1981	7 1982	8 1984	9 1986	10 1987	11 1989	12 1991	13 1993	14 1994	15 1995	16 1997	17 1999	18 2000	19 2001
1 AT 2 BE									12.2	2.4	28.7	0.5	0.9	1.8	3.6	1.2		1.6	1.1
3 CS								1.7	1.6	1.5	2.5	2.5	1.2	1.3	2.3	2	4.6	2	1.6
4 DK								2.8	5.7	3.4	8.2	2.9	6.6	7.2	3.4	1.6	2.9	3.4	2.3
6 FR								1.7	7.3	2	38.9	1.3	4.9	3.3	3.4	5.4	2.9	4.5	5.5
7 DDLeip									8.9	2	11.5				3.4	2.1	9.2	4.7	2.4
8 DE 9 GR								9	1.6	1	3.5	0.6	1.4	2.4	1.1	0.9 28.1	8.5 5.3	4.2	0.5
10 HU								7.3	7.3	14.1	22.4		11.8	20.3	18.4	8	3.5	7.4	5.8
11 IS 12 IE Mot CNP									2.4	3.9	10.4	2.8	3	14.8	18.8 0.8	2.1	2.8	2.4	2
13 IT								1.7	2.4	4.4	7.1	11.7	5.7	7.5	3.6	11.8	5.5	4.5	4.6
14 NL								10.7	7.3	4.5	6.1	8.5	1.2	1	1.2	0.8	1.4	0.9	1.9
15 NO Met.								1.7	3.2	0.5	3.3	1.6	2.3	2.7	1	1.4	1.9	3.2	5
16 PL 17 DT										2.4	29.4	30	3.8	6 10.6	1.8	3.1	5.5	6	0.5
18 RO									15.4	15.2	30.4	5.9	1.0	10.0	7.1	71.2	2.9	0.7	5.0
19 ES IVL									12.2	16.2		4.4	16.9	15.8	13.9	1	1.8	1.8	1.7
20 SE									16.2	5.8	4.5	4.2	0.9	3.5	4.8	3.5	5.5	8.1	8.7
21 CH								2.3	11.4	10.2	1.2	1.6	7.5	5.3	3.4	0.7	5.9	8.5	2.3
23 GB								2.8	3.2	2.5	7	0.8	5.7	9.5	10.3	6.5	24.8	1.6	1.1
24 YU SNV									19.5	7.3	8.2	4.5	148.2	695.2	23.2	4.7	5.1	6.7	2
25 SE AES								7.3	11.4	7.2	2.4	<u> </u>							
26 CA ILL.								2.0	0.8	0.9	1.6	0.7	1.2	0.7	0.4	0.6	12	1.1	1.2
28 US CONC								0.5	0.0	0.7	1.6	1.0	0.4	0.4	1.2	1.2	1.5	0.7	0.4
29 CA ISPRA																			
30 IT										2.8	4.7	2	2.3	2.4	2.1	3.5	14.7	8.4	4.4
31 SK												3.2	3.5	14.1	10.6	1	3.9	5.4	0.4
32 LT 33 LV													12.5	37.3	95	4.4 2.9	12	20.2	44
34 TR													16	8	3.3	3.7	4	16.4	129.6
35 HR													5.6	23.1	11.4	7.6	3.1	2	1.1
36 SI EPA/EBS													3.3	29.7	9.1	0.5	1.3	1.7	0.4
38 FF															13.1	3.3 4 1	11.9	5.0	5
39 PL (Env.)															0.5	0.5	2.1	1.4	0.9
40 MK																	21.4	6.7	6
41 EETartu																20			
Gml. 19 TNO								1.7								2.9			

Table 4.9: Random error (2RSD%) for Ca in precipitation in the different laboratory intercomparisons.

1	Ca prec ∆T	8 1984	9 1986	10 1987 -10 1	11 1989 -15 9	12 1991 -2 1	13 1993 1 7	14 1994 0 5	15 1995 -1 7	16 1997 -2 0	17 1999	18 2000 -3.5	19 2001 -7 9
2	BE		-14.9	21.0	-10.0	-2.1	1.7	0.0	-1.7	-2.0		-0.0	-1.5
3	CS	0.0	0.0	1.4	-9.1	1.6	0.2	3.3	-1.2	6.5	-4.0	-14.3	-3.9
4	DK	40.4	0.0	-7.7	0.0	6.5	-9.4	-4.3	-12.0	4.7	1.4	-5.5	-5.4
5	FI	-13.1	-1.0	2.0	3.5	-4.5	1.8	1.7	2.7	2.8	3.1	3.1	-0.5
7	FR DDLein	2.0	18.9	-0.5	-61	-0.4	-1.1	-0.4	-17.0	-12.4	_4 1	-0.0	-0.8
8	DE	4.1	1.0	0.8	8.7	-0.2	1.3	-2.3	-1.3	3.8	2.2	7.7	2.8
9	GR							_		43.3	-19.2		
10	HU	10.3	107.5	16.2	31.7		-14.7	79.5	47.1	-12.3	0.8	-23.2	-26.8
11	IS			3.1	17.0	7.1	-10.6	-7.5	0.3	2.4	2.2	2.7	-1.8
12	IE Met CNR	20	-2.0	-7.1	5.2	3.6	1 1	-11.0	-10.1	-16.9	0.2	-100	-/.1
13	NI	-117	-2.0	3.7	26	0.7	3.4	4.2	47	37	9.2	5.5 1 4	-0.5
15	NO Met.	3.4	6.0	3.1	4.0	-3.6	7.5	6.1	1.2	1.0	0.3	9.3	-3.8
16	PL			-7.1		-12.1	1.1	4.9	5.6	-10.4	-5.5	-8.4	-2.1
17	PT			-18.5	116.9	8.9	8.1	14.8	15.5	2.7	4.1	-4.0	16.0
18	RO	_	-10.9				· · -	200	-19.0	171.3	o 4 💻		
19	ES IVL	_	-18.9	9.1	4.6	-1.1	-11./	-32.2	-46.3	0.8	6.1	0.8	4.9
20	SE CH	-4.8	-21.9	-0.0	-4.0	-7.6	-0.0	-4.3	-3.5	0.2	<u>23.2</u> 1 <i>A</i>	-4.0	0.4 -0.3
22	SOV/RU	21.4	1.0	-4 7	4.0	8	23.0	-11.5	-8.2	-11.2	16.3	16.6	23.5
23	GB	-6.2	-4.0	-3.9	-6.3	1.0	9.6	11.7	8.2	17.4	36.4	-1.3	-1.3
24	YU SNV		-20.9	23.4	30.3	3.7	72.6	457.6	-28.3	-11.2	-2.6	-18.3	-3.6
25	SE AES	3.4	-11.9	-11.3	4.3					💻			
26	CA ILL.	0.0	3.0	1.3	3.8	0.6	3.2	4.2	3.2	-1.4	-1.4	3.1	-4.9
27	US EPA	-8.3	-0.2	-1.9	2.0	-2.0	1.2	1.2	-1.3	-1.3	-0.2	2.0	-0.5
20	CA ISPRA	-0.0	-0.0	0.5	1.4	1.1							
30	IT			3.1	4.3	7.2	2.3	3.0	-1.9	-0.3	29.0	11.3	-2.1
31	SK					1.5	3.6	0.9	-22.9	-4.8	-1.5	-9.2	-0.8
32	LT						-5.2	-30.4		-4.7	-17.1	-16.7	
33	LV					_	-14.9	67.3	24.4	-1.4	-27.6	-22.8	-17.4
34						_	6.4	-7.3	5.7	5.2	5.2 20.1	28.3	2.6
36	SI FPA/FBS						0.4	105.4	-11 1	3.0	5.8	37	-0.2
37	IE						0.0		8.1	13.7	-27.5	4.0	0.2
38	EE								-14.5	-2.7	-0.5	15.4	-23.5
39	PL (Env.)								0.3	1.7	-0.8	3.2	1.6
40	MK										8.9	-20.6	-9.7
41 12	EEIailu IS (Ork.)									22.6			
Gml.	19 TNO	-8.3								22.0			

Table 4.10: Systematic error (RB%) for Ca in precipitation in the different laboratory intercomparisons.

	Na prec	1 1977	2 1978	3 1978	4 1979	5 1980	6 1981	7 1982	8 1984	9 1986	10 1987	11 1989	12 1991	13 1993	14 1994	15 1995	16 1997	17 1999	18 2000	19 2001
1 2	AT BE	28.6					4.6			1.5	1	3.2	4.5 2.1	1.5	0.4	1.6	1.3		3.5	1.4
3 4	CS DK	9.4		8	0.9	1.3	0.5	1.6	1.5	0.5	1.8 0.7	5.2 8	0.5 2.1	0.8 7.5	2.3 2.5	0.9 3.4	1.7 4.1	1.1 1.9	1.9 4.5	1.1 4.3
5 6	FI FR	3.3		9.1 15.6	13.8	0 1.7	2.5 6.1	0.6 2.2	5.7 1.8	0.6 0.9	1.3 2.7	2.7 3.2	0.3 1.6	1.9 2.2	0.7 5.2	1.4 3.1	1.4 0.9	0.7 1.6	2.9 1.8	0.5 0.5
7 8 0	DDLeip DE	15.6					9.5	1.9	3	5.2 2.3	1.7 0.5	2.7 3.2	0.8	1.1	0.7	1.5 2	0.2	0.4 1.9	0.6 0.8	0.8 2.1
9 10 11	HU	13.9		6.9	16.3 3.6	8.7 2.6	13 1	11.3	4.2 8 9	3.9 4	1.4 0.4	3.7 3.2	7.5	24.9 1 1	36.8 5.9	13.5	<u>15</u>	3.4 1.6	8.6 0.7	4.2
12 13	IE Met IT CNR				0.0	2.0	1.1	1.9	1.3 8.2	1.5 1.5	1.5 6.2	<u>17.7</u> 1	1.3 3.6	7.8	2.5 3.7	2.1 3.1	1.3 1.5	1.2	0.8	1.1 2.4
14 15	NL NO	9 3.6		11.4 6.9	0.5 4.5	0.9 0.7	1 14.7	4.6 2.3	1.7 0.4	0.6 1.2	1.5 2.2	2.8 3.6	0.7 0.6	0.6 6.4	0.4 0.8	1.1 0.8	0.9 0.5	0.7 0.7	0.9 1.3	0.3 0.6
16 17	PL Met. PT	6.3		10.3	3.6	2.4	8.5	4.6			2.3 4.1	7 4.7	3.1 3.2	5.7 11.9	2.8 13.9	1.4 2	3.8 2.5	2.8 5.2	5.5 6.3	1.2 0.4
18 19 20	RO ES SE IM									5.2 15.9	0.5	73	1.1	2.7	1.9	3.1 3.8 4 7	20.2 3.4	1.7	3.4	2
20 21 22	CH SOV/RU	3.5				18	0.5		1.3 1.5	1.5 1.5 0.9	0.9	2.2 25.8	1.1 1.1 7.5	1.5 4 1.9	1.2 24.5	4.7 1.5 0.3	0.3 6.2	4.7 1.6 4.5	0.9 13.8	0.2 1.6 1.2
23 24	GB YU	2.1		6.9	5.4	2.6 5.3	5 2.9	4 3.4	1.6	2.3 16.2	0.1 4.9	3.2 3.2	9.1 2	1.9 3.3	1.7 2.9	1.6 2.2	0.9 1.5	0.8 6.2	0.4 3.1	0.5 2.1
25 26	SE SNV CA AES	25.5		8	1.8	0.7	0.2	1		0.8 0.6	1.4 0.4	2.8 3.2	0.4	1.5	0.4	1.2	0.5	0.5	0.6	0.4
27 28 20	US ILL. US EPA								1.8 0.9	0.2 1.4	0.4 1.5	3.2 2.1	1.5 1.4	0.4	0.3	0.6	0.5	1.3	0.7	1.5
29 30 31	IT ISPRA										0.9	2.4	1.2 0.6	4.2 2.2	1.1 4	2.5 4.6	2.4 4 1	3.9 1.5	3.1 2.5	1 21
32 33	LT LV												0.0	8.9 4.7	4.7 1.6	4 2.6	2 3.8	7.3 2.6	8.6 1.3	3.4
34 35	TR HR													2.3 6.1	1.4 5.9	1.9 5.2	3	1.4 1.2	2.4 1.3	2.9 0.5
36 37	SI IE EPA/EBS								2.2					6.1	11.2 19.1	3.5 4.7	0.3 1.6	1.1 5.5	1.3 60.5	0.3
30 39 40	EE PL (Env.) MK														10.9	25.4 1.2	0.3	3.5 0.3 8.5	1.3 27.6	3.4 0.8 8.8
41 42	EETartu IS(Ork.)																0.9			
Gml. 19	TNO				1.1	14.5	8.3	31.3	0.9											

 Table 4.11:
 Random error (2RSD%) for Na in precipitation in the different laboratory intercomparisons.

EMEP/CCC-Report 6/2003

	Na prec	1 1977	2 1978	3 1978	4 1979	5 1980	6 1981	7 1982	8 1984	9 1986	10 1987	11 1989	12 1991	13 1993	14 1994	15 1995	16 1997	17 1999	18 2000	19 2001
1 2	AT BE	-42.6		_		_	-10.0			-10.4	-4.6	-1.2	-2.2 -4.4	1.5	0.5	2.7	-1.6		-2.6	-5.2
3 4	CS DK	-1.3		9.8	0.7	-1.1	-0.3	-1.4	0.0	-1.3	2.3 -0.4	-15.1 -1.9	0.5 -4.4	-1.0 12.0	-14.8 11.6	-2.9 -1.8	-4.7 -1.9	-0.9 1.3	3.3 6.4	-0.8 7.2
5	FI FR	5.4		8.4 40.7	4.4	0.0 2.1	-5.1 -4.5	-0.4 -2.4	0.4 4.0	3.6 7.4	-1.8 2.1	1.2 -9.0	0.1 -9.9	0.7 0.1	0.4 5.6	0.9 6.9	1.9 -7.7	1.1 0.1	3.2 4.8	0.1 -3.4
8	DDLeip DE	-14.7					-8.6	-4.8	-6.4	-8.1 -11.3	-2.9 0.6	-9.1 0.3	0.7	-4.0	-3.6	-11.2 -0.1	-2.1 -6.4	-1.4	1.3 -1.3	0.0 -2.0
9 10 11	HU	-4.8		7.0	0.9	-6.1	07	7.2	-1.6	-3.8	-25.7	-17.9 2 9	17.6 4 7	-26.8	34.1	-31.6	-12.5	-8.1 -1.0	-19.5 -2.6	-27.4
12	IE Met				-2.4	-5.2	0.0	0.7	-2.0	0.8	-5.5 -5.5	4.8 0.8	-6.0 6.4	20.0	-5.7	-4.0 -6.3 -0.7	-5.1	10	-0.2	-2.1 -2.2
14 15	NL NO	9.6 4.4		-1.4 8.4	1.5 -5.5	-0.6 0.0	1.8 19.0	5.7 -7.1	1.4 -3.3	0.8 -0.2	3.3 3.1	-2.8 1.3	1.4 0.1	2.4 16.6	-0.9 4.5	0.8 -0.7	-0.1 -0.1	-0.1 -0.3	-1.5 0.3	-1.6 -3.4
16 17	PL Met. PT	16.4		1.4	-0.2	-1.1	-7.0	-0.7			<mark>-16.3</mark> -0.9	-0.9 18.7	-6.9 -15.0	-11.0 -12.9	15.5 -7.9	17.2 -15.5	5.1 -6.0	-3.0 -12.9	-7.0 -7.6	-2.9 4.6
18 19	RO ES									33.8 -27.2	14.2	- ·	4.0	33.0	15.9	7.7 -19.7	-47.9 3.9	7.3	-3.9	3.5
20 21	CH	-1.1				10.5	1.5		-4.4	-4.7 -6.6	-0.3 -1.4	-2.4 -0.9	-0.2 0.1	-6.1 4.3	-18.8 0.5	-15.2 -2.2	-5.1 0.4	0.0 -0.1 2.0	0.3	9.6 0.1
22 23 24	GB YU	-2.6		26.6	6.6	8.1	-5.4 0.3	-0.4	-1.3 -2.0	-1.7 -0.2 1.5	-1.5 -1.7 -6.2	-5.2 -2.3	-20.1 14.2 -1.3	-7.7	-0.6 5.1	-0.1 2.7	-5.5 -5.5 3.7	-2.9 -2.9	-2.6 -4.9	-3.4 -4.6
25 26	SE SNV CA AES	-2.2		16.8	0.4	-1.1	-0.6	-3.8		1.7 -2.5	3.0 1.3	2.4 1.3	1.4	-1.9	-0.1	2.3	-1.5	-0.6	0.3	-0.2
27 28	US ILL. US EPA								-3.5 0.7	-1.3 -0.2	-1.4 -6.6	0.1 1.7	-8.4 0.7	1.0	1.2	0.5	-0.9	0.6	1.4	-2.0
29 30	CA CONC IT ISPRA										4.5	0.3	3.8	12.6	0.3	1.6	0.4	4.8	0.7	-1.0
31 32 33													1.3	0.1 10.6	-8.3 7.1	-2.8 -17.7	17.6 1.6	-0.6 -1.4 6.7	1.8 9.3	-3.3
34 35	TR HR													-37.9 -36.9 8 1	-3.8 -12 3	-1.9 7.0 -6.7	4.5	2.8	-3.9 11.3 -4 1	-3.9 0.4 -4 0
36 37	SI IE EPA/EB	S							8.4					-3.8	17.9 19.0	2.0 13.7	1.9 4.3	3.7 <mark>-</mark> -2.9	1.6 8.4	-0.3
38 39	EE PL (Env.)														22.2	57.9 -3.3	-6.4 0.7	-7.2 1.0	-1.9 -1.2	-6.8 -0.7
40 41	MK EETartu																	-21.7	-50.2	-38.8
42 Gml. 19	IS(Urk.) TNO				-4.6	-11.3	-26	-30.1	-1.1								0.3			

Table 4.12: Systematic error (RB%) for Na in precipitation in the different laboratory intercomparisons.

Mg prec	1 1977	2 1978 1978	3 4 3 1979	5 1980	6 1981	7 1982	8 1984	9 1986	10 1987	11 1989	12 1991	13 1993	14 1994	15 1995	16 1997	17 1999	18 2000	19 2001
1 AT									6.7	9.4	0.5	1.2	0.9	2.7	2		1.7	1.5
2 BE 3 CS	1/9.8	4.	0.9	0.5	9.1 0.9	3.7	1.7	3.2 2.7	30.3 1.7	2.2	2.3	0.8	1.8	1.2	1	0.5	1.2	0.9
4 DK 5 FI	7.1 3.9	5.8	3 4.6	2.1	1.8	3.3	6.3	1.6	3.3 4.3	4.6 1.1	0.9	2.2 0.4	3.2 0.5	3.7 0.7	0.6	2.9 0.7	0.5	5.7 0.6
6 FR	3.2	2.5	3.6	9.5	0.9	0.8	1.6	6.4	1.4	34.8	1.2	0.8	2.1	3.7	2.8	1.9	1.7	2.7
7 DDLeip 8 DE	15.9				0.9	2.5	22	9.1 3.2	2.6 1.7	3 1.9	1.2	1.8	0.9	13 2.2	2.2 1.4	1.7 2.9	1.9 1.7	2.1 0.9
9 GR 10 HU	2.6	58	64	63	51	10	173	21.6	83			69			6.1 1	8.2 1 4	1 0	30
11 IS	2.0		2.7	0.5	5.4	4.5	17.5	21.0	1.7	2.4	1.9	1.2	2.5	5.1	1.6	1.7	1.5	3.9
12 IE Met									2.4	2.7	2.8	0.6	1.4	2.7	3			0.9
13 IT CNR	2.0	5	0 10	2.1	27	1.6	2.4	2.2	7.9	7.8	6	3.7	10.1	3.7	2	2.9	3.1	1.5
14 NL 15 NO	2.9 1.4	5.0 11.	o 1.0 7 0.9	3.2	0.9	1.6	5.5 1.6	3.2 3.2	0.7	4.0	2.0	5.5 3.5	3.2	2.2	2 1.4	2.4	4.3	2.1
16 PL Met.	0.6	5.8	8.2	6.3	16.3	9.1			5	8.4	2.6	0.8	2.5	2.5	1.6	3.8	2.4	1.2
17 PT									6	49.4	9.7	0.8	2.5	2.7	1.4	1.2	2.4	2.7
18 RU 19 ES								4.8	14 5		26	69	з	2.7	14.2	11.3	43	03
20 SE IVL								1.6	3.3	3	3.7	1.6	0.9	1.2	0.4	2.9	3.4	5.1
21 CH	2.9			4	2.4	3.6	3	4.8	1.4	3.2	1.6	3.7	3.2	2.7	1	3.1	5.5	0.3
22 SOV/RU							17.3		46.5		1.2	9.5	4.6	6.9	4.7	2.4	2.4	3.6
23 GB	7.8	5.6	8 8.2	<u>15.8</u>	4.5	3.3	11	3.2	1.7	3.2	1.9	5.5	5.3 25.5	9.8 11 g	2.4	14.6	0.5	0.6
25 SE SNV				0.5	1.0	0.2	1.0	9.6	5.7	3	4.4	74.5	20.0	11.0	0.0	5.1	0.2	1.5
26 CA AES	17.5	11.	7 3.6	2.1	0.9	10.7		3.2	1.7	2.7	0.2	1.6	0.5	1	0.2	1	0.5	0.3
27 US ILL.							2	1.8	0.7	1.1	2.1	1.2	0.7	1.2	1	1.4	1.7	1.5
28 US EPA							3.1	2.1	1.7	5.7	1.4							
30 IT ISPRA									1.4	1.1	0.9	4.3	3	0.7	3.4	6.7	4.3	1.5
31 SK											2.3	2.4	0.9	2.5	1.4	2.9	3.6	1.2
32 LT												22.3						o -
33 LV 34 TP												16	1 1	0.2	2.4	7.2 5.5	153.7	2.7
35 HR												2.2	6.2	11	4.5	1.2	0.7	1.8
36 SI												9.3	3.9	4.9	0.8	1.2	1	0.6
37 IE EPA/EBS							4.7						22.2	1	1.2	5.3	17.7	
38 EE 39 PL (Env.)														0.5	1.6	6.5 0.5	1./ 1./	3.9
40 MK														1	0.4	3.8	5.5	9.9
41 EE (Tartu)																		
42 IS (Ork.)			10.0	44.0	10	<u> </u>	c 1								1.6			
Gmi. 19 INO			12.8	11.6	10	3.3	3.1											

 Table 4.13:
 Random error (2RSD%) for Mg in precipitation in the different laboratory intercomparisons.

	Mg prec	1 1977	2 1978	3 1978	4 1979	5 1980	6 1981	7 1982	8 1984	9 1986	10 1987	11 1989	1 1991	13 1993	14 1994	15 1995	16 1997	17 1999	18 2000	19 2001
1 2	AT BE	253.2		_			6.3			-29.4	-5.0 19.9	-2.3	0.0	3.0	0.8	3.9	-15.4		-1.8	-4.1
3 4	CS DK	-6.1		10.7	1.1	-1.2	-0.8	2.2	1.7	-0.6	-0.6 -3.8	-4.0 -0.7	0.0 1.0	-0.5 0.2	-1.1 1.1	0.9 -7.5	5.5 -3.2	-1.8 -9.1	-0.3 -6.2	0.4 -7.4
5 6	FI FR	-2.6 1.5		7.1 -0.7	8.9 -5.6	0.0 1.3	-1.6 2.4	-3.0 0.0	-5.8 0.0	-3.9 11 8	-13.7 -3.8	2.3	-3.0 -1.0	-2.7 -10 4	1.1 -6.5	0.6 -4.5	3.2	1.5 2.6	1.8 -14 7	1.5
7	DDLeip	25 4		•	0.0		1.6	2.0	2.0	11.4	9.3	8.3	1.0	10.2	17	-26.4	-8.2	-3.8	7.3	3.0
9	GR	20.4			~ 4	4.0	1.0	5.0	-3.0	0.0	-0.0	-0.7	-1.0	10.2	-1.7	-0.5	18.9	2.6	-2.9	1.5
10 11	HU IS	-8.3		114.3	3.4 2.2	-1.3	1.6	-3.0	-39.4	-40.2	-9.9 -7.9	-1.7	-2.0	-32.8 -7.5	-7.9	-1.8	-0.5 -16.1	0.6 -11.7	-12.0 1.5	- <u>15.9</u> -1.1
12 13	IE Met IT CNR								0.0		-5.3 -3.5	-2.3 24.5	-4.0 -11.0	-2.7 9.5	-8.1 20.8	-14.1 13.5	-14.2 0.5	2.3	0.0	-1.1 -0.7
14 15	NL NO	4.2 2 4		-7.1	0.0 -2.2	-1.3 -3.9	0.8 -0.8	-10.1	-9.6 -3.8	0.0 0.0	-0.9 29	-4.0 2.3	1.0 -7.0	-0.5	-2.5 67	2.1	5.7 0.5	-0.9	4.7	0.7
16	PL Met.	0.0		-14.3	-4.5	-9.0	-23.0	-6.1	0.0	0.0	6.4	-8.6	-3.0	-5.5	-2.5	-3.0	-4.2	1.2	-3.2	-0.7
18	RO									-15.7	-7.0	30.3	J2.0	-0.5	-0.0	3.6	46.5	2.9 5.9	5.0	0.5
19 20	SE IVL					_				- <u>15.7</u> -5.9	-9.6	-5.3	-7.0 -1.0	-8.0 2.0	-15.4 -1.7	-10.5 7.5	-0.7 10.7	-0.6 6.2	-1.2 -2.3	-0.7 17.0
21 22	CH SOV/RU	0.1				-1.8	2.5	-0.5	-2.5 38.5	<mark>-15.7</mark>	-3.2 7.6	-7.9	0.0 3.0	2.0	6.7 -9.3	-0.3 -0.9	-3.2 1.7	3.8 -4.1	10.0 -4.4	0.0 -4.4
23 24	GB YU	-9.0		-21.4	-5.6	-18.1	2.4 1.6	5.1 11 1	-9.6 3.8	-5.9 -11 8	-7.3	9.6 2 3	4.0 -5.0	4.7	12.6	6.0 -5 1	4.2 5.2	16.4 12.6	-3.2 -12 6	-1.1 -1.5
25	SE SNV	24		0.0	3 1	2.6	1.6	1.0	0.0	-13.7	3.5	1.3	0.0	2.0	5 1	0.6	0.2	0.0	0.6	3.0
20	US ILL.	2.4		0.0	-3.4	2.0	-1.0	-1.0	-3.3	-5.9	-2.3	-1.0	-1.0	3.2	0.8	0.3	-2.2	-3.2	-5.6	-4.8
28 29	CA CONC.								-1.9	-3.9	-1.2	10.9	3.0			_	_	_	_	
30 31	IT ISPRA SK										2.0	-4.3	0.0 -1.0	0.2 0.5	-0.8 2.0	-1.5 0.3	-2.5 0.2	5.6 1.5	7.3 -1.5	-4.1 3.3
32 33	LT LV													-28.1			13.2	-7.0	141.6	-1.5
34 35	TR HR													3.7	0.3	-0.6	6.5	5.0	5.6 -7 9	6.6 2.2
36	SI	<u></u>							2.0					56.7	-7.6	-6.9	-2.0	-0.9	0.9	-1.8
38		3							-3.0						-21.0	2.4	-6.7	23.5	-7.6	-8.5
39 40	PL (ENV.) MK															0.3	1.0	0.3 -20.6	-3.2 -32.6	-1.8 -8.5
41 42	EE (Tartu) IS (Ork.)																3.2			
Gml. 19	TNO				-6.7	0	-14.3	-3	-7.7											

Table 4.14: Systematic error (RB%) for Mg in precipitation in the different laboratory intercomparisons.

CI prec	1 1977	2 1978	3 1978	4 1979	5 1980	6 1981	7 1982	8 1984	9 1986	10 1987	11 1989	12 1991	13 1993	14 1994	15 1995	16 1997	17 1999	18 2000	19 2001
1 AT 2 BE	31.1					26.4	2	1.4	4.2 2.1	2.4 6.2	2.4 0.9	14 3.8	4.1	2.1	1.3	4.1		4.2	5.3
3 CS	40.0		2.3	3.9	4.6	1.2	0.6	0.8		1.8	6.9	2.7	0.7	1.6	0.5	1.3	1.3	1.1	2.1
4 DK 5 Fl	10.2		8.3 4.5	1.7	0.7 19	0.3	0.4	1.6 1.1	1.4 0.8	0.3	2.3 1.4	4.8 1.9	2.4	0.9	3.5 0.8	1.2	2.5 0.5	1.5	4
6 FR	7.3		6	8.8	29.1	2.5	19.6	1	0.0	4	5.7	3.2	9.3	0.8	1.6	2.1	5.1	1.9	2.3
7 DDLeip									1.2	4.7	10.3				0.8	2.5	1.2	0.9	1.9
8 DE	6.7				2.1	0.5	2.5	0.8	0.8	0.7	0.7	3.5	0.4	2.1	3.2	2.1	115	5.8	2
10 HU	12.8		14.3	11.3	10	5.2	3.7	1.1	4.7	2.3	24	17.6	24.3	11.9	6.7	3.2	3.8	2.8	4.6
11 IS						0.2	•		10.8	0.5	2.5	6.1	10.2	25.2	1.6	7.3	11.4	5.6	2
12 IE Met									5					3.1	2.6	2.3		0.8	0.5
13 IT CNR	5 /		12 5	2.2	0.1	0.0	57	5.7	0.2	0.7	1.7	2.6	2.1	1.3	2.8	3.3	2.5	2.6	1.4
14 NL 15 NO	5.4 3.8		4.5	2.3 2.8	9.1	0.9	5.7 1	2.5	0.3	04	1.9	22	2.1	12.9	1.7	0.7	0.5	5.0 0.5	4.1
16 PL Met.	4.4		15.1	0.3	8.6	1.5	1.1	2.0	2.6	3.8	9	4.8	2.7	12.6	2.6	2.4	5.1	2.9	7
17 PT						3.7	10		2.9		18.4	12.1	2.9	21.1	3.5	4.6	3.4	1.3	1
18 RO									2.7	0.0		444	40.0	7.0	3.2	48.2	6.1	14.5	8.4
19 ES 20 SE IVI	3.0		6.8	22.7	1 0	3.6	10.6	24	4.2	2.2 1 3	nα	14.4	19.3	7.9 2.1	2.2	1.3	27	13.5	5.9
21 CH	10.1		25.6	22.1	12.5	2.9	1.3	5.2	7.0	4.9	0.9	0.6	1.1	3.1	0.6	0.1	1	2.4	1.8
22 SOV/RU								9		1.3	4.4	22.3	10.9	21	5.4	7.3	17.7	7.2	12.7
23 GB	3.1		4.5	10.1	5.5	3.8	2.8	1.6	4.4	0.2	1.7	2.4	7.5	25.8	2.9	6.5	7.8	8.1	0.8
24 YU 25 SE SNV				6.4	9.7	7.4	7.6	0.8	62	1.6 2.4	16.7 0.4	16.4	10.1	14.3	8.3	11.4	6.9	16.3	18.7
26 CA AES	15		5.3	1.1	11.1	2.2	1.4		0.2	1.1	2.4	5.2	2.1	2.7	2	4.4	1.3	1.4	0.4
27 US ILL.								0.3	0.9	0.4	0.8	0.5	1.4	2.9	1.3	0.8	1.2	0.8	0.5
28 US EPA								0.5	1.5	0.1	0.6	0.6							
29 CA CONC.										4.5	0.9	10	1 1	6.0	1 1	1 1	3.4	54	1 0
31 SK										0.7	1.5	2	10.2	12.6	2.9	2.6	3.5	4.1	2.6
32 LT													4.8	12.8	2.6	5.4	0.9	1.5	
33 LV																8.5	24.4	0.3	5.6
34 IR 25 UD													12 5	1.1	1.9	0.4	3.1	25	3.1
36 SI													23	18.9	47	4.7	3.8	0.8	1.4
37 IE EPA/EBS								0.8	1.4					8.9	2.2	0.7	10.5	47.2	
38 EE															19.4	3.5	6.5	4	12.5
39 PL (Env.)															3.1	2.5	14.3	11.9	3.1
40 MK 41 FFTartu																10			23.1
42 ISOrk																2.3			
Gml. 19 TNO				2.6	1.4	1.7	2.8	1.7											

Table 4.15: Random error (2RSD%) for Cl in precipitation in the different laboratory intercomparisons.

CI prec	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1 1	1977	1978	1978	1979	1980	1981	1982	1984	1986	1987	1989	1991	1993	1994	1995	1997	1999	2000	2001
	55.0					15.7	3.0	35	- 10.0	-24.0 2.2	-3.4	-4.0 13.5	2.5	-2.2	0.1	-0.1		-0.0	-13.0
2 00	00.0		02	-1 8	-5.6	0.8	-2.0	-3.5	-3.0	_1.5	-21.7	-13.5	-7 1	0.0	-20	-0.4	-6.1	-87	-9.5
3 03 4 DK	-14		_11 1	-2.3	-1.4	-27	-2.0	-2.5	35	-10.1	10.9	3.6	-0.4	39	-2.5	-5.0	-4.2	-3.5	-9.5
5 FI	-1.7		11 1	49.7	36.1	-16.8	-2.2	-1.2	0.6	-0.5	-4.9	-2.4	-3.6	3.0	0.0	0.3	-0.8	-1.8	-10
6 FR	67		0.0	-7.2	-11.9	-5.9	29.9	1.0	0.0	-2.8	-13.6	-4.3	-5.3	-1.6	2.6	-7.8	-6.9	-3.2	-5.3
7 DDI eip	0.1		0.0		11.0	0.0	20.0	1.0	28	-3.4	94	1.0	0.0	1.0	-1.6	13.2	-2.9	-27	-7.2
8 DE	-4.2				-1.7	-4.7	0.7	-8.4	1.7	1.4	-2.8	-5.3	-2.5	-1.2	-14.1	-0.9	-6.8	-2.4	-3.8
9 GR									0.7	0.4		-16.1	36.1			207.4	-7.5		
10 HU	16.3		34.1	2.8	-7.1	13.4	-5.5	6.2	-10.6	-4.1	-28.8	-57.5	-3.4	41.1	-32.2	8.9	-10.4	16.8	3.2
11 IS									36.2	-7.0	-4.1	7.2	-13.5	10.0	-0.8	-1.2	-0.1	-9.0	6.8
12 IE Met									-2.8					-6.3	-7.5	-13.6		-5.2	3.7
13 IT CNR								-10.1	0.0	6.6	-2.2	-10.4	8.6	-3.2	0.4	8.4	3.2	6.0	-3.3
14 NL	10.4		-41.5	-6.9	-2.2	-4.1	4.6	15.5	-4.1	-0.2	-4.1	-2.0	-1.5	-4.5	-2.8	-0.5	-3.9	0.7	-0.6
15 NO	-4.4		-6.5	-1.4	-6.8	-1.0	-0.7	-1.6	2.6	-4.5	-3.5	0.9	1.5	8.7	0.3	-4.0	-5.2	-4.8	-2.6
16 PL Met.	-8.0		22.1	1.4	-4.2	-4.1	-3.1		0.4	-8.8	4.6	13.5	9.4	32.4	-9.7	-0.9	0.3	-4.7	-5.2
17 PT						-4.5	-21.6		-10.6		-9.1	-21.5	-1.9	-29.4	-4.1	-1.7	-7.3	-5.6	1.8
18 RO									17.7				_		-6.5	26.9	-6.8	11.8	0.0
19 ES									-2.6	-9.9		-0.9	25.7	13.4	15.9	-3.9	52.9	52.8	-29.1
20 SE IVL	-4.3		-61.8	34.8	-5.1	7.3	15.6	1.0	-17.3	-4.9	-1.5	-0.9	-2.5	0.8	-0.1	0.5	-5.9	-6.1	-7.3
21 CH	-8.8		9.2		-5.1	-4.1	2.1	3.3		1.6	1.2	-2.0	0.3	1.6	0.7	0.8	-0.9	-5.8	-0.5
22 SOV/RU	70		44.4 💻	0.0	0.0			25.9	0.0	-6.6	-34.9	-64.6	-33.5	-34.8	-4.4	-12.8	8.1	-10.4	-22.4
23 GB	7.6		11.1	6.9	0.0	15.7	1.1	2.5	-0.6	-0.7	1.2	-5.0	10.7	27.0	0.9	-2.4	25.5	19.6	0.2
				1.8	-8.0	-9.4	-0.0	-4.5	2.8	-18.8	40.2	14.5	18.4	1.8	-2.8	34.8	32.0	-7.7	-47.5
	1.0		0.0	5 5 -	10.2	A A 📕	20		0.7	-3.4	-1.3	2.0	16	0.2	1 0	4 5	0.2	0.4	0.6
20 CA AES	1.0		-0.9	5.5	-10.2	4.4	2.0	0.0	0.2	-4.9	-2.0	-2.0	-4.0	1.2	-1.2	-4.5	-0.2	1.0	-0.0
27 US ILL. 28 LIS EDA								_1 7	-0.4	-1.7	27	1.5	-1.5	1.0	0.9	-0.7	1.7	-1.0	-1.2
								-1.7	-0.4	-1.7	_93	1.5							
30 IT ISPRA										-3.9	-9.6	29	23	0.8	-0.6	02	-12 1	26	-4 1
31 SK	•									0.0	0.0	-0.5	-24 7	12	79	-117	-5.3	-8.6	-10
32 I T												0.0	-4 5	-1.5	-1.8	-19.3	-0.9	-3.5	1.0
33 LV																-15.2	27.4	-3.8	61.2
34 TR														-4.3	-7.6	-0.2	4.0	-6.7	-6.0
35 HR													41.9	50.1	-22.8	-13.7	8.8	-1.6	-3.9
36 SI													13.0	44.2	-2.1	0.0	-3.3	-1.0	-3.8
37 IE EPA/EBS	5							-3.3	-4.1					18.2	-6.2	-14.2	-20.2	-3.2	
38 EE															-39.9	0.9	-6.0	-18.0	25.9
39 PL (Env.)															0.1	2.1	-22.8	11.0	-4.7
40 MK																			-6.7
41 EETartu																1.0			
42 ISOrk																-6.7			
Gml. 19 TNO				6.9	3.4	-4.1	3	1.4											

Table 4.16: Systematic error (RB%) for Cl in precipitation in the different laboratory intercomparisons.

1 AT 10.8 16.6 24.4 1.6 9 1.2 194 7.2 2 3.9 11.5 4.7 8.2 3.2 3 CS 26.9 6 6.9 4.9 4.6 2.2 2.4 1.12 13 22.2 2.03 3.4 4.7.6 5 4.4 8.4 7.6 5 4.4 8.4 7.6 5 4.4 8.4 7.6 6.6 7.8 4.7 7.5 3.8 1.1 1.3 3.7 7.7 7.7 7.7 3.8 1.11 1.31 3.7 7.7 7.7 7.7 3.8 1.1 1.8 4.3 1.1 3.1 3.7 7.7 7.5 5.4 70 0.0149 2.03 7.6 2.01 7.2 7.5 3.8 1.1 1.8 3.1 1.8 3.1 1.8 3.1 1.8 3.1 1.8 3.1 1.8 3.1 1.1 1.8 3.1 1.1 1.8 3.1 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8		pH prec (H+)	1 1977	2 1978	3 1978	4 1979	5 1980	6 1981	7 1982	8 1984	9 1986	10 1987	11 1989	12 1991	13 1993	14 1994	15 1995	16 1997	17 1999	18 2000	19 2001
2 EE 10.9 28.9 21.4 11.5 22.8 3.6 11.2 13 22.8 20.3 84 4 7.6 5 4.4 81 7.8 4 5 5 7.6 12.6 14 14 15 10.5 17.6 12.7 17.6 12.7 17.6 12.7 17.6 12.7 17.6 12.7 17.6 12.7 17.6 12.7 17.6 12.7 17.6 12.7 17.6 12.7 17.6 12.7 17.6 12.7 17.6 12.7 17.6 12.7 17.6 12.8 11.1 1.6 1.6 4.8 2.8 10.2 17.9 12.1 1.6 1.6 1.0 1.0 1.6 8.5 4.0 10.2 10.0 1.0	1	AT	10.8		16.8	16.5	24.4	1.6	9	1.2	<u>19.4</u>	7.4	15.6	7.2	2	3.9	11.5	4.7		8.2	3.2
4 0K 3 155 7.6 12.6 12.8 11.5 13.8 16.9 13.2 5.4 5.2 1.4 5.2 1.9 6.6 7.8 1.7 5 FI 5.8 30 2.2 8.6 8.2 10.0 7.2 7.5 3.8 1.6 4.4 3.4 1.1 3.1 3.7 0.7 2.1 7.8 6 FR 28.9 30 2.2 8.6 8.2 10.7 7.5 5.8 3.1 1.9 1.6 8.5 4.9 3.1 7.9 7.5 5.4 9 GR 13.3 20.6 6.62.5 8.5 2.6 6.6 1.8 1.8 9 5.7 5.5 5.9 3.1 6.5 7.6 8.4 10.3 10.2 10.8 11.1 18.8 11.1 18.8 11.1 18.8 11.1 18.8 11.1 18.8 11.1 18.8 11.1 18.8 11.1 18.8 11.1 18.8 11.1 18.8 11.1 18.8 11.1 <t< td=""><td>2</td><td>BE</td><td>10.9</td><td></td><td>26.0</td><td><u> </u></td><td>21.4 6.9</td><td>11.5 / 0</td><td>29.2 4.6</td><td>3.8 2.2</td><td>11.2</td><td>13 21</td><td><u>22.2</u> 5.3</td><td>20.3</td><td>3.8</td><td>1</td><td>76</td><td>5</td><td>11</td><td><u>8</u>1</td><td>78</td></t<>	2	BE	10.9		26.0	<u> </u>	21.4 6.9	11.5 / 0	29.2 4.6	3.8 2.2	11.2	13 21	<u>22.2</u> 5.3	20.3	3.8	1	76	5	11	<u>8</u> 1	78
5 F1 58 20.7 7.8 8.2 10.7 7.2 7.7 3.8 1.6 4.4 3.4 3.1 3.7 0.7 2.1 2.7 1.8 6 FR 26.9 30 2.2 8.6 8.2 10.2 7.5 3.8 11.9 1.6 6.4 8.5 4.9 3.1 7.9 7.5 5.4 9 GR 123.2 200.1 45.2 2.5 2.9 1.0.7 2.2 1.7.9 2.0.1 8.3 11.1 5.8 4.4 2.0.9 7.6 4.7 7.8 5.5 5.9 3.1 7.9 7.6 4.2 10.9 7.6 4.2 10.9 7.6 4.1 4.7 2.2.3 7.8 17.7 2.1 2.8 1.6 1.4 4.4 4.9 5.2 2.5 2.1 1.4 4.4 4.9 5.2 3.5 3.7 2.5 5.2 7.8 1.3 4.5 6.8 5.6 5.6 5.7 1.7 7.4 8.1 4.4 4.4 4.9 5.2 3.5 3.7	4		3		15.5	76	12.6	12.8	11.5	13.8	15.1	10.9	13.2	2.3 5.4	5.0	11	5.2	19	6.6	7.8	47
6 FR 26.9 30 2.2 8.6 8.2 10.2 7.5 5.4 8.2 11.9 16 8.5 4.9 3.1 7.9 7.5 5.4 8 DE 30 2.2 8.6 8.2 10.7 2.7 7.5 5.8 5.9 3.1 6.5 7.6 8.4 10.3 10.2 20.8 2.67 2.0 10.7 2.2 7.8 5.1 8.3 11.1 18.8 8.7 4.1 4.8 2.8 7.9 9.14 8.3 14.4 9.5 7.5 5.4 8.0 8.2 2.5 7.8 5.4 4.8 2.8 7.8 7.8 5.4 4.8 2.8 7.8 7.8 5.4 4.8 1.8 0.3 1.1 1.4 8.3 1.1 4.8 8.3 1.1 4.8 1.4 4.8 2.5 5.1 1.4 4.8 9 5.2 1.1 4.8 1.4 4.5 8.8 1.6 1.2.5 7.8 3.3 5.6 2.5 5.1 1.7 7.5 <	5	FI	5.8		20.7	7.8	8.2	10.7	7.2	7.7	3.8	1.6	4.4	3.4	1.1	3.1	3.7	0.7	2.1	2.7	1.8
7 DD/Leip 32.1 29.0 32.1 29.0 6 16.8 13.8 9 57 5.5 5.9 3.1 1.5 6.8 4.0 4.2 4.2 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.2 4.2 10.7 3.8 11.1 1.8 8.7 4.1 4.1 4.1 4.2 10.7 3.8 4.2 10.5 6.4 5.2 5.4 1.1 1.4 8.4 4.2 10.5 6.4 5.2 5.4 1.1 1.4 8.3 8.5 2.5 1.3 8.5 5.3 3.1 1.8 1.4 4.4 4.4 2.2 3.5 3.1 1.0 4.4 4.4 4.4 4.4 2.2 3.5 3.1 1.0 4.4	6	FR	26.9		30	2.2	8.6	8.2	10.2	7.5	12.7	7.5	3.8	11.9	1.6	8.5	4.9	3.1	7.9	7.5	5.4
B DE 321	7	DD/Leip									17.8	4.8	2.8				10.3	6	4	8.2	5.6
9 GK 1232 2003 42.5 2009 27.6 20 10, 72 17.8 22.6 17.8 12.6 72.5 11.1 18.8 8, 7 4.1 11 IS 15.4 5.2 2.6 5 3.9 6.4 5.5 2.5 4.1 14.9 3.9 2.4 11.5 3.0 2.2 1.6 3.4 1.6 5.5 2.5 4.1 14.9 3.9 2.4 11.5 3.0 2.2 1.6 3.4 1.6 5.5 2.5 8.1 11.6 3.5 2.2 1.6 1.6 1.6 1.6 0.5 1.7 7.4 1.4 1.6 <t< td=""><td>8</td><td>DE</td><td>32.1_</td><td></td><td></td><td></td><td></td><td>6</td><td>16.8</td><td>13.8</td><td>9</td><td>5.7</td><td>5.5</td><td>5.9</td><td>3.1</td><td>6.5</td><td>7.6</td><td>8.4</td><td>10.3</td><td>10.2</td><td></td></t<>	8	DE	32.1_					6	16.8	13.8	9	5.7	5.5	5.9	3.1	6.5	7.6	8.4	10.3	10.2	
ID Dot Do	9 10	GR	123.2	_	290.8	462.5	83.5	27.6	20	10.7	22	17.9	20.1	8.3	11.1	04.4	18.8	8.7	4.1	7.0	44.0
11 15 16 7.2 5.8 1.5 3.4 1.8 0.4 3.5 1.2 1.4 <th1.1< th=""> <th1.4< th=""> <th1.1< td="" th<=""><td>10</td><td>HU</td><td>33.4_</td><td></td><td>/5.4</td><td>181.3</td><td>23.0 5.2</td><td>20.8</td><td>8.2</td><td>20.7</td><td>6.1</td><td>6.4</td><td>124.6 5.5</td><td>73.Z</td><td>7.9</td><td>91.4</td><td>54.3 3.0</td><td>4.2</td><td>10.9</td><td>20.0</td><td>14.3</td></th1.1<></th1.4<></th1.1<>	10	HU	33.4_		/5.4	181.3	23.0 5.2	20.8	8.2	20.7	6.1	6.4	124.6 5.5	73.Z	7.9	91.4	54.3 3.0	4.2	10.9	20.0	14.3
13 17 ONR 17 212 00 17 212 00 100 22 00 17 212 00	12	IF Met				10.4	7.2	58	15	34	18	0.4	3.5	2.5	15	3.6	3.9 8.9	2.4	11.5	29	2.9
14 NL 6.2 48.5 16.2 11.3 8.5 3.6 8.8 1.6 2.5 8.1 10.8 10.9 4 4 3.6 4.5 6.6 2.5 8.1 10.8 10.9 4 4 3.6 4.5 6.6 2.5 8.1 10.8 10.9 4 4 3.6 4.5 6.6 2.5 7.7 2.5 5.2 7.8 3.3 3.5 6.2 5.8 5 16 PL Met. 33 3.9 3.2 18.8 2.38 2.63 17.4 15.8 16.9 3.8 11.6 10.4 10.1 <td< td=""><td>13</td><td>IT CNR</td><td></td><td></td><td></td><td></td><td>1.2</td><td>0.0</td><td>1.0</td><td>4.1</td><td>44.7</td><td>22.3</td><td>7.8</td><td>17.7</td><td>21.2</td><td>89.4</td><td>114.8</td><td>3.5</td><td>23.1</td><td>2.0</td><td>5</td></td<>	13	IT CNR					1.2	0.0	1.0	4.1	44.7	22.3	7.8	17.7	21.2	89.4	114.8	3.5	23.1	2.0	5
15 NO 15.8 20.1 22.4 16.1 4.3 4.4 4.9 5.2 3.5 3.7 2.5 5.2 7.8 3.3 3.5 6.2 5.8 5 16 PL Met. 33 10.7 3.4 4.6 10.2 6.7 13.7 4.8 1.1 4.6 10.2 5.6 7 13.7 4.8 1.1 4.6 10.2 5.6 7 13.7 4.8 1.1 4.6 10.2 5.6 7 13.7 4.8 1.1 4.6 10.2 5.6 7 13.8 11.4 4.6 10.2 10.1 10.1 11.6 10.4 7.1 7.2 3.8 3.1 13.7 12.3 3.4 4.1 1.7 4.1 2.4 2.7 1.7 3 2 2.0 6.4 4.3 3.5 0.5 1.7 4.7 21 CH 8.5 10.4 7.1 14.9 7.5 1.8 3 14.7 4.5 8.8 16.8 6.8 4.9 3.6 8.5	14	NL	6.2		48.5	18.5	16.2	11.3	8.5	3.6	8.8	1.6	2.5	8.1	10.8	10.9	4	4	3.6	4.5	6.8
16 PL Met. 33 31.6 10.7 3.4 8.7 5.7 13.4 4.6 10.2 6.7 13.7 4.8 1.1 4.6 12.2 5.6 17 PT BC 22.8 28.8 26.3 17.4 15.8 16.9 3.8 12.8 10.1 10.3 17.4 17.7 3.2 10.1 10.3 17.4 13.8 12.8 14.7 7.5 13.5 12.4 6.2 0 2.6 6.8 8.9 3.6 8.5 4.2 18.8 18.8 18.8	15	NO	15.8		20.1	22.4	16.1	4.3	4.4	4.9	5.2	3.5	3.7	2.5	5.2	7.8	3.3	3.5	6.2	5.8	5
17 PT 3.9 3.2 18.8 23.8 26.3 17.4 15.8 16.9 3.8 12.8 12.2 5.4 17 8.7 18 RO 12.1 5.1 6.3 12.3 15.1 17.7 3.2 10.1 10.3 11.6 20 SE IVL 5.5 20.1 3.4 7.7 23.8 3.3 13.7 1.2 3.4 4.1 1.7 4.1 2.4 2.7 1.7 3 2 21 CH 8.9 17.6 9.8 15.8 10.4 7.1 14.9 5.2 4.8 2 2.9 6 4.3 3.5 0.5 1.7 4.7 5.5 3.5 6.8 22 SOV/RU 13.5 7.4 13.7 20.1 8.1 3 14.7 4.5 8.8 16.8 6.8 8.9 3.6 8.5 4.2 18.8 25 SE SNV 13.5 7.4 13.7 20.1 8.1 3 14.7 4.5 8.8 16.8	16	PL Met.	33		31.6	10.7	3.4	8.7	5.7			13.4	4.6	10.2	6.7	13.7	4.8	1.1	4.6	12.2	5.6
18 RO 22.8 22.8 22.6 3 3.8 11.6 10.4 19 ES 12.1 5.1 6.3 12.3 15.1 17.7 3.2 10.1 10.3 11.6 20 SE IVL 5.5 20.1 3.4 7.7 23.8 3.3 13.7 1.2 3.4 4.1 1.7 4.1 2.4 2.7 1.7 3 2 21 CH 8.9 17.6 9.8 15.8 10.4 7.1 14.9 5.2 4.8 2.2.9 6 4.3 5.0 5 1.7 4.7 22 SE SV/RU 11.9 7 29.5 8.7 13.5 2.4 6.2 0 2.6 4.6 8.4 12.1 6.6 1.5 7.9 2.6.5 0.5 24 YU 13.5 7.4 13.7 20.1 8.1 3 14.7 4.5 8.8 16.8 4.8 15.7 5.2 7 4 3.7 27 US ILL. <td< td=""><td>17</td><td>PT</td><td></td><td></td><td></td><td>3.9</td><td></td><td>3.2</td><td>18.8</td><td>23.8</td><td>26.3</td><td>17.4</td><td>15.8</td><td>16.9</td><td>3.8</td><td>12.8</td><td>12.8</td><td>2.2</td><td>5.4</td><td>17</td><td>8.7</td></td<>	17	PT				3.9		3.2	18.8	23.8	26.3	17.4	15.8	16.9	3.8	12.8	12.8	2.2	5.4	17	8.7
19 ES 12.1 5.1 17.4 5.1 17.4 3.2 10.1 10.1 10.3 10.5 10.7 3.2 10.1 10.1 10.3 10.5 10.7 3.2 10.1 10.7 3.1 2.2 10.1 10.3 10.7 3.1 2.1 3.1 10.1 10.1 10.3 10.7 3.1 2.2 10.1 10.7 3.1 2.2 10.1 10.7 3.1 2.2 10.1 10.7 3.1 2.2 10.1 10.7 3.1 2.2 10.1 10.7 3.1 2.2 10.1 10.7 3.1 2.2 10.1 10.7 3.1 2.2 10.1 10.7 3.1 2.2 10.1 10.7 3.1 2.2 10.1 10.7 3.1 10.7 4.1 11.7 4.1 11.7 4.1 11.7 4.1 11.7 4.1 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	18	RO									22.8	F 4		<u> </u>	10.0	4 - 4	2.2	6.3	3.8	11.6	10.4
20 SL NL 3.3 20.1 3.4 7.1 23.6 3.3 1.1 1.2 3.4 4.1 1.1 4.1 2.4 2.4 1.1 3.5 1.7 4.7 21 CH 8.9 17.6 9.8 15.8 10.4 7.1 14 7.5 11.7 8.4 6.9 9.6 4.2 4.7 5.5 3.5 6.8 23 GB 11.9 7 29.5 8.7 13.5 2.4 6.2 0 2.6 4.6 8.4 12.1 6.6 1.5 7.9 2.6.5 0.5 24 YU 13.5 7.4 13.7 20.1 8.1 3 14.7 4.5 8.8 16.8 6.8 8.9 3.6 8.5 4.2 18.8 25 SE SNV 23.9 18.2 7.9 4.4 16.5 5 3 4.8 8.6 2.4 1.3 6.7 7.6 4.7 5.7 4 3.7 27 US ILL. 2.4 2.0 7.1 1.3 3.5 7.8 11.1 5.7 5.9 <td>19</td> <td></td> <td>5 5</td> <td></td> <td>20.1</td> <td></td> <td>3 1</td> <td>77</td> <td>22.0</td> <td>33</td> <td>12.1</td> <td>5.1 1.2</td> <td>3 /</td> <td>0.3 1 1</td> <td>12.3</td> <td>15.1</td> <td>2.4</td> <td>3.Z</td> <td>10.1</td> <td>10.3</td> <td>11.0</td>	19		5 5		20.1		3 1	77	22.0	33	12.1	5.1 1.2	3 /	0.3 1 1	12.3	15.1	2.4	3.Z	10.1	10.3	11.0
22 SOV/RU 11.0 0.0 10.0 11.1 11.0 0.0 11.0 0.0 11.0 0.0 11.0 0.0 11.0 0.0 11.0 0.0 11.0 0.0 11.0 0.0 11.0 0.0 11.0 0.0 11.0 0.0 0.0 11.0 0.0 0.0 11.0 0.0 0.0 11.0 0.0 0.0 11.0 0.0	20	CH	89		17.6		9.4	15.8	10.4	5.5 7 1	14.9	5.2	2.4 4.8	4.1	29	4.1	4.3	3.5	0.5	17	47
23 GB 46.8 11.9 7 29.5 8.7 13.5 2.4 6.2 0 2.6 4.6 8.4 12.1 6.6 1.5 7.9 26.5 0.5 24 YU 13.5 7.4 13.7 20.1 8.1 3 14.7 4.5 8.8 16.8 6.8 8.9 3.6 8.5 4.2 18.8 25 SE SNV 5.4 1.3 8.8 6.8 6.8 8.9 3.6 8.5 4.2 18.8 26 CA AES 23.9 18.2 7.9 4.4 16.5 5 3 4.8 3.6 2.4 1.3 6.7 7.6 4.7 5.7 4 3.7 28 US EPA 2.4 2.5 9.6 9.2 1.8 3.7 10.2 3.2 1 8.2 4.4 2.5 9.6 9.2 1.8 31 SK 31 SK 3.7 10.2 3.2 1 8.2 4.4 2.5 9.6 9.2	22	SOV/RU	0.0		11.0		0.0	10.0	10.4	14	14.0	7.5	11.7	8.4	6.9	9.6	4.2	4.7	5.5	3.5	6.8
24 YU 13.5 7.4 13.7 20.1 8.1 3 14.7 4.5 8.8 16.8 6.8 8.9 3.6 8.5 4.2 18.8 25 SE SNV 23.9 18.2 7.9 4.4 16.5 5 3 4.8 8.6 2.4 1.3 6.7 7.6 4.7 5.7 4 3.7 27 US ILL 18.2 7.9 4.4 16.5 5 3 4.8 8.6 2.4 1.3 6.7 7.6 4.7 5.7 4 3.7 20 US EPA 2.4 2.5 3.6 9.2 7.8 4.8 4.6 2 4.5 2.7 7 5 5.2 7 5 5.2 7.8 9.2 1.8 8.1 3.7 10.2 3.2 1 8.2 4.4 2.5 9.6 9.2 1.8 30 IT ISPRA 3.7 10.2 3.2 1 8.2 4.4 2.5 3.6 9.2 9.4 31 SK 3.1 5.1 5.9 9 0.3	23	GB	46.8		11.9	7	29.5	8.7	13.5	2.4	6.2	0	2.6	4.6	8.4	12.1	6.6	1.5	7.9	26.5	0.5
25 SE SNV 5.4 1.3 8.8 26 CA AES 23.9 18.2 7.9 4.4 16.5 5 3 4.8 8.6 2.4 1.3 6.7 7.6 4.7 5.7 4 3.7 27 US ILL. 6.3 5.7 2.7 4.8 3.6 2.4 1.3 6.7 7.6 4.7 5.7 4 3.7 28 US EPA 4.8 4.6 2 4.5 2.7 4.8 3.6 2.4 1.3 6.7 5.5 7.6 9.0 9.2 1.8 30 IT ISPRA 3.7 10.2 3.2 1 8.2 4.4 2.5 9.6 9.2 1.8 31 SK SK 3.7 10.2 3.2 1 8.2 4.4 2.5 9.6 9.2 9.4 32 LT 3.7 10.2 3.2 1 8.3 3.5 1.3 5.1 13.6 8.3.9 14 16 8.3.3 2	24	YU				13.5	7.4	13.7	20.1	8.1	3	14.7	4.5	8.8	16.8	6.8	8.9	3.6	8.5	4.2	18.8
26 CA AES 23.9 18.2 7.9 4.4 16.5 5 3 4.8 8.6 2.4 1.3 6.7 7.6 4.7 5.7 4 3.7 27 US ILL. 6.3 5.7 2.7 4.8 3.6 2.8 9.1 5.7 5.2 7 5 5.2 28 US EPA 4.8 4.6 2 4.5 2.7 4.8 3.6 2.4 2.8 9.1 5.7 5.2 7 5 5.2 29 CA CONC. 8.1 3.7 10.2 3.2 1 8.2 4.4 2.5 9.6 9.2 1.8 30 IT ISPRA 3.7 10.2 3.2 1 8.2 4.4 2.5 9.6 9.2 1.8 31 SK SK 3.7 10.2 3.2 1 8.2 7.4 4.9 9.6 34 TR 2.5 1.8.2 4.4 2.5 3.2 7.4 4.9 9.6 <t< td=""><td>25</td><td>SE SNV</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5.4</td><td>1.3</td><td>8.8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	25	SE SNV									5.4	1.3	8.8								
27 US ILL. 6.3 5.7 2.7 4.8 3.6 2.8 9.1 5.7 5.2 7 5 5.2 28 US EPA 4.8 4.6 2 4.5 2.7 29 CA CONC. 8.1 30 IT ISPRA 3.7 10.2 3.2 1 8.2 4.4 2.5 9.6 9.2 1.8 31 SK 10.5 6.5 35.2 1.9 9 0.3 7.3 5.9 32 LT 5.5 15.9 9 0.3 7.3 5.9 33 LV 23.8 14.5 4.5 3.2 7.4 4.9 9.6 34 TR 23.8 14.5 4.5 3.2 7.4 4.9 9.6 35 HR 10.6 6.1 1.1 8.1 8.9 7.1 36 SI 8.1 37 IE EPA/EBS 24 38 EE 36.8 4.8 4.5 7.9 7.3 38 EE 8.4 4 7.8 26.1 9.2 41 EETartu 44 43.2 42.8 41 EETartu 6.8 42 ISOrk 6.8	26	CA AES	23.9		18.2	7.9	4.4	16.5	5		_ 3	4.8	8.6	2.4	1.3	6.7	7.6	4.7	5.7	4	3.7
28 US EPA 4.8 4.6 2 4.5 2.7 29 CA CONC. 8.1 30 IT ISPRA 3.7 10.2 3.2 1 8.2 4.4 2.5 9.6 9.2 1.8 31 SK 10.5 6.5 35.2 13.2 12.5 3.6 9.2 9.4 32 LT 5.5 15.9 9 0.3 7.3 5.9 33 LV 23.8 14.5 4.5 3.2 7.4 4.9 9.6 34 TR 23.8 14.5 4.5 3.2 7.4 4.9 9.6 35 HR 25 24.9 7.1 1.3 7.8 1.3 5.1 36 SI 5.5 24.9 7.1 1.3 7.8 1.3 5.1 37 IE EPA/EBS 24 38 EE 24 38 EE 24 39 PL (Env.) 8.4 4 7.8 26.1 9.2 41 EETartu 6.8 42 ISOrk 6.8	27	US ILL.								6.3	5.7	2.7	4.8	3.6	2.8	9.1	5.7	5.2	7	5	5.2
30 IT ISPRA 3.7 10.2 3.2 1 8.2 4.4 2.5 9.6 9.2 1.8 31 SK 3.7 10.2 3.2 1 8.2 4.4 2.5 9.6 9.2 9.4 32 LT 3.6 35.2 13.2 12.5 3.6 9.2 9.4 32 LT 5.5 15.9 9 0.3 7.3 5.9 33 LV 23.8 14.5 4.5 3.2 7.4 4.9 9.6 34 TR 13.6 8 3.9 14 16 4.8 5.3 35 HR 25 24.9 7.1 1.3 7.8 13.5 36 SI 24 36.8 4.8 4.5 7.9 7.3 38 EE 33.3 11.2 13 7.8 11.1 5.7 39 PL (Env.) 4.4 43.2 42.8 43.2 42.8 41 EETartu 6.8 6.8 6.8 6.8	28	US EPA								4.8	4.6	2	4.5	2.7							
31 SK 5.7 10.2 5.2 1.4 2.5 3.6 9.2 1.0 32 LT 10.5 6.5 35.2 13.2 1.2 5.5 3.6 9.2 9.4 33 LV 5.5 15.9 9 0.3 7.3 5.9 9 3.7.3 5.9 9 3.7.3 5.9 9 3.3 5.9 3.3 1.0 5.5 15.9 9 0.3 7.3 5.9 9 3.3 5.9 9.4 4.9 9.6 3.4 7.4 4.9 9.6 3.5 3.5 HR 13.6 8 3.9 1.4 16 4.8 5.3 5.1 5.1 1.3 7.8 1.3 5.1 3.3 1.1 1.3 7.8 1.3 5.1 3.3 11.1 1.1 8.1 8.9 7.1 3.3 11.1 5.7 3.3 11.1 5.7 3.3 31.1 1.1 5.1 3.3 11.1 1.1 8.4 4 7.8 26.1 9.2 4.4 43.2 42.8 <td>29</td> <td>IT ISPRA</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.1</td> <td>37</td> <td>10.2</td> <td>32</td> <td>1</td> <td>82</td> <td>44</td> <td>25</td> <td>9.6</td> <td>92</td> <td>18</td>	29	IT ISPRA									0.1	37	10.2	32	1	82	44	25	9.6	92	18
32 LT 100 100 15.5 15.9 9 9 0.3 7.3 5.9 0.3 7.4 4.9 9.6 33 LV 23.8 14.5 4.5 3.2 7.4 4.9 9.6 13.6 8 3.9 14 16 4.8 5.3 14.6 4.8 5.3 35 HR 2.5 24.9 7.1 1.3 7.8 1.3 5.1 36.8 4.8 4.5 7.9 7.3 36 SI 6.9 10 6.1 1.1 8.1 8.9 7.1 37 IE EPA/EBS 24 36.8 4.8 4.5 7.9 7.3 38 EE 33.3 11.2 13 7.8 11.1 5.7 39 PL (Env.) 8.4 4 7.8 26.1 9.2 40 MK 44 43.2 42.8 41 EETartu 33.2 42 ISOrk 6.8	31	SK										5.7	10.2	10.5	65	35.2	13.2	12.5	3.6	9.2	9.4
33 LV 23.8 14.5 4.5 3.2 7.4 4.9 9.6 34 TR 13.6 8 3.9 14 16 4.8 5.3 35 HR 2.5 24.9 7.1 1.3 7.8 1.3 5.1 36 SI 6.9 10 6.1 1.1 8.1 8.9 7.1 37 IE EPA/EBS 24 36.8 4.8 4.5 7.9 7.3 38 EE 3.3 11.2 13 7.8 11.1 5.7 39 PL (Env.) 8.4 4 7.8 26.1 9.2 40 MK 44 43.2 42.8 41 EETartu 6.8 6.8 42 ISOrk 6.8 6.8	32	LT												10.0	5.5	15.9	9	0.3	7.3	5.9	0.1
34 TR 13.6 8 3.9 14 16 4.8 5.3 35 HR 2.5 24.9 7.1 1.3 7.8 1.3 5.1 36 SI 6.9 10 6.1 1.1 8.1 8.9 7.1 37 IE EPA/EBS 24 36.8 4.8 4.5 7.9 7.3 38 EE 33.3 11.2 13 7.8 11.1 5.7 39 PL (Env.) 8.4 4 7.8 26.1 9.2 40 MK 43.2 42.8 41 EETartu 33.2 6.8 33.2 42 ISOrk 6.8 6.8 6.8	33	LV													23.8	14.5	4.5	3.2	7.4	4.9	9.6
35 HR 2.5 24.9 7.1 1.3 7.8 1.3 5.1 36 SI 6.9 10 6.1 1.1 8.1 8.9 7.1 37 IE EPA/EBS 24 36.8 4.8 4.5 7.9 7.3 38 EE 33.3 11.2 13 7.8 11.1 5.7 39 PL (Env.) 8.4 4 7.8 26.1 9.2 40 MK 43.2 42.8 41 EETartu 33.2 6.8 42 ISOrk 6.8 6.8	34	TR													13.6	8	3.9	14	16	4.8	5.3
36 SI 6.9 10 6.1 1.1 8.1 8.9 7.1 37 IE EPA/EBS 24 36.8 4.8 4.5 7.9 7.3 38 EE 33.3 11.2 13 7.8 11.1 5.7 39 PL (Env.) 8.4 4 7.8 26.1 9.2 40 MK 4.4 43.2 42.8 41 EETartu 33.2 6.8 42 ISOrk 6.8 6.8	35	HR													2.5	24.9	7.1	1.3	7.8	1.3	5.1
37 IE EPA/EBS 24 36.8 4.8 4.5 7.9 7.3 38 EE 33.3 11.2 13 7.8 11.1 5.7 39 PL (Env.) 8.4 4 7.8 26.1 9.2 40 MK 44 43.2 42.8 41 EETartu 33.2 6.8 42 ISOrk 6.8 6.8	36	SI													6.9	10	6.1	1.1	8.1	8.9	7.1
38 EE 33.3 11.2 13 7.8 11.1 5.7 39 PL (Env.) 8.4 4 7.8 26.1 9.2 40 MK 44 43.2 42.8 41 EETartu 33.2 6.8 6.8 6.8 6.8	37	IE EPA/EBS								24					_	36.8	4.8	4.5	7.9	7.3	
35 FL (LIIV.) 6.4 4 7.0 20.1 9.2 40 MK 4.4 43.2 42.8 41 EETartu 33.2 42 ISOrk 6.8	38															33.3	11.2	13	7.8 7.8	11.1 26.1	5.7
41 EETartu 42 ISOrk Cml 10 TNO 174 3 7 2 31 26 6.8	39 ⊿∩																0.4	4	1.0 4.4	43.2	9.2
42 ISOrk 6.8	40	FFTartu																33.2	7.7	40.2	-2.0
	42	ISOrk																6.8			
	Gml. 19	TNO				17.4	3	7.2	3.1	26											

Table 4.17: Random error (2RSD%) for pH in precipitation in the different laboratory intercomparisons.

pH pred	; 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
	1977	1978	1978	1979	1980	1981	1982	1984	1986	1987	1989	1991	1993	1994	1995	1997	1999	2000	2001
1 AT	-10.2		10.3	19.3	46.1	0.6	21.6	14.9	94.1	-17.5	32.6	16.5	3.3	2.5	-7.1	-10.6		-20.4	-7.2
2 BE	-1.8			-44.4	-11.3	20.8	-32.6	8.7	0.5	-17.2	-52.5	-18.9						_	_
3 CS			20.1	-9.9	-8.4	1.9	-1.5	6.3	11.9	-12.7	-3.1	-2.6	-9.3	7.9	-7.1	-11.0	-6.9	-9.8	-12.5
4 DK	0.4		7.2	-4.3	-23.4	-21.4	-10.9	-16.5	-12.1	-21.5	-18.7	-8.2	-16.3	-9.9	0.8	-1.2	-14.1	-14.6	-10.0
5 FI	-3.0		-16.6	-22.2	-15.8	-21.4	-9.5	-7.3	23.4	-4.5	-9.5	-5.2	2.4	9.3	9.6	0.1	-2.2	-4.2	-4.3
6 FR	18.0		-8.8	-1.7	-11.6	-3.1	19.6	34.7	11.9	-18.7	-8.2	23.3	-7.8	6.7	12.4	-4.2	-12.7	4.0	-2.8
7 DDLeip									-18.5	-10.8	-3.6				-0.6	-16.4	-7.7	-13.5	-9.6
8 DE	4.5			1007	07 5	-17.5	0.6	-14.9	6.3	-10.8	-10.3	8.3	-0.9	11.3	-3.3	-19.7	-17.9	-12.6	
9 GR	121.8		287.4	1627	-87.5	-30.4	35.3	10.3	-6.1	4.5	91.6	-4.1	38.1	404.5	1.0	-15.3	-5.0	40.4	04.0
10 HU	11.2		49.2	92.7	59.9	-4.9	33.2	61.0	44.1	28.5	276.0	330.3	19.6	184.5	123.5	-15.2	-18.9	-19.4	-31.0
11 IS 12 IF Ma				15.1	18.0	- o	9.6	57.0		-9.5	-9.5	0.3	-1.1	-6.4	14.7	-1.9	-9.2	-10.0	-5.9
					-2.8	-5.8	7.0	4.0	10.5	0.0	-3.3	2.1	-3.3	0.7	24.7	30.9	17.0	1.7	-3.0
	к 20		51.2	25.7	0.2	20 6	20	10.2	0.2	44.3 6.0	5.4 0.0	22.2	25.7	195.0	190.0	15.2	17.0	-10.4	-14.0
14 NL 15 NO	3.U 11.1		20.1	-20.7	0.2	- <u>30.0</u> 2.0	-2.0	4.1	-0.2	-0.9	0.0	-23.3	-20.7	1.0	- 10.0	-1 <u>0.2</u>	-9.0	-10.7	-21.9
10 NU 16 PL Mo	+ 280		3.4	20.0	0.0	-5.9	4.2	5.5	21.0	5.7 6.4	-0.0	-2.0	-13.2	4.0	10.9	-7.0	-9.2	15.2	-11.5
	l. <u>-20.9</u>		-3.4	-29.2	-22.0	7.0	$\frac{3.7}{22.2}$	85	0.2	47.9	-0.0	10.3	7.0	17.2	-10.0	5.8	-2.1	25.6	-0.8
17 FT 18 PO				-17.5		-7.0	-22.2	0.0	55.2	47.0	-30.4	-19.5	-1.9	17.5	173	-16.5	-6.0	25.0	21.0
10 KO									-5.1	-8.8		-37.0	-16.6	30.1	-3.1	Q 1	-26.7	-26.9	-34.5
20 SE IVI	19.3		38.1		-7 1	-12 8	5.8	-0.2	87	22	-5.1	-3.9	-1.0	1.3	_9.1	21	-0.5	-3.1	47
20 CE IVE 21 CH	51.0		26.3		-19.9	5.8	-1 1	-8.7	5.2	-1.6	-7.1	0.5	-5.6	-3.1	-5.4	-9.2	21	-2.9	-10.6
22 SOV/R	J		20.0		10.0	0.0		-24 7	0.2	-4.6	-15.9	-17.6	-20.5	-8.7	4 6	-21.8	-17.9	-11.3	-10.7
23 GB	4.3		4.0	8.4	52.8	-6.2	33.7	4.3	14.3	0.0	-1.6	9.4	-5.9	3.7	10.4	-2.9	-14.5	54.3	11.8
24 YU				-7.9	-20.1	-20.2	-0.3	-3.0	9.3	-13.6	7.2	-2.2	15.0	-6.2	9.4	-13.4	-12.9	11.5	26.3
25 SE SN	V								34.7	0.0	-5.5								
26 CA AE	S <mark>-27.3</mark>		18.3	-10.9	3.2	-8.5	9.6		21.9	-5.2	-7.1	-3.9	1.3	-3.1	-6.7	-11.9	-4.9	-6.6	-6.5
27 US ILL								-4.0	11.1	-0.7	-4.7	-3.8	-4.7	1.1	-1.8	-9.2	-13.1	-7.9	-9.9
28 US EP.	A							0.0	11.0	-0.7	-3.1	5.6							
29 CA CO	NC.								3.6										
30 IT ISF	PRA									5.1	22.7	-0.8	-4.0	-5.2	0.0	-1.2	-13.6	13.5	-2.3
31 SK												-6.1	-17.1	-22.0	12.8	48.4	-1.1	-8.3	-9.9
32 LT													1.6	30.7	-8.3	-7.3	-9.1	-4.0	
33 LV													-25.5	-12.5	-13.8	-17.6	-13.2	-9.9	0.8
34 TR													22.7	-1.5	4.0	46.5	36.8	-11.8	-10.1
35 HR													-5.4	64.7	-4.7	-7.3	-10.2	-7.2	-17.9
36 SI								00.0					-7.6	-1.5	-4.1	2.1	-17.2	-1.1	-31.3
37 IE EP	A/ESB							69.3						100.8	1.1	-25.5	-15.1	-14.6	~ ~
38 EE														-54.0	-13.8	4.0	-8.0	27.4	-2.8
39 PL (EN)	/.)														17.2	-12.7	-11./	105.1	-0.1
																20.2	-12.4	105.1	200.1
41 EETalu 12 ISOrk	L															-20.2			
Gml 19 TNO				-27 0	-9.2	-24.8	17.4	38.7								-20.2			
				-21.3	-3.2	-24.0	17.4	-00.7											

Table 4.18: Systematic error (RB%) for pH in precipitation in the different laboratory intercomparisons.

SO2 a	iir (imp)	1 1977	2 1978	3 1978	4 1979	5 1980	6 1981	7 1982	8 1984	9 1986	10 1987	11 1989	12 1991	13 1993	14_avg 1994	15_avg 1995	16_avg 1997	17_avg 1999	18 2000	19 2001
1 AT 2 BE 3 CS 4 DK 5 FI 6 FR 7 DD			8.3	4.2	1	75.8 6.1	2.6	2.5 9.9	1.6 <mark>-</mark> 2.2	<mark>14</mark> 3.8	2.9 2	5.3 3.9 4.5	4.6 1 2	2.3 2.8 1.2	1.9 3.05 1.1	4.5 0.85 0.9	5.8 1.2 7.85	1.1 1.05 1.85		2.2 1 0.7
7 DD 8 DE 9 GR 10 HU 11 IS 12 IE 13 IT	CNR					14	9.3	6	5.7	5.9	2.8	6.3 5.5	0.9 6.2 9.7	2.5 4.5 4.1 7.2	11.1 7.75 4.15	10.5 6.1 2.6 3.95	3.1 8.5 2 4.5	4.7		1 3.6 1.8 1.7
14 NL 15 NO 16 PL 17 PT			3.6	5.2	6.5	3.5	6.8	1.7	1	6.2	0.4	1.5	5.2 3.3	0.8 14	2.65 23.3	1.25 2.4	1.85 5.1	2.1 2.55		2.8 3
18 RO 19 ES 20 SE 21 CH	IVL													2.3	3.15	1.8	3.85	0.9		7.1 2.7
22 RU 23 GB													4.4	6	8.05	1.85	2.65	2.6		5.7 4.2
25 SE 26 CA 27 US-I	SNV		1.8	1.6	2.1	43.3	3.8			2.7 1.3	0.4 2.1	1.3 2	1.4		1.7	1.7	2.6	0.75		
28 US-E 29 CA	CONC.								6.4	2.7 9.2	0.1	2.2 3.8	0.1	0	0.45	4.45	4.05			
30 11 31 SK 32 LT	ISPRA										0.5		1 4.7	2 2.1 15.1	2.45 6.25 8.05	1.15 2.15 40	1.05 3.7 10.8	4.6 0.8		2.8
33 LV 34 TU 35 HP														3.5 <mark>12.3</mark>	23 2.25		8.9 22.2	6.9 1.2		<mark>12.7</mark> 1.9
36 SI 37 IE (EF	PA)													11.6	25.1 3.1		2 10.6	6.5		1.8
38 EE 39 PI Env 40 41	, I.														7.2		5.35 3.6	13.1 5.85		9.2 1.2
42 Gml. 19 NL	TNO																30			

*Table 4.19: Random error (2RSD%) for SO*₂ *in air in impregnated filter in the different laboratory intercomparisons.*

EMEP/CCC-Report 6/2003

Table 4.20: Systematic error (RB%) for SO₂ in air in impregnated filter in the different laboratory intercomparisons.

S	O2 abs	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1 A	т	21.5	6.5	2.4	5.1	1980	2.9	1982	1984 5.9	1986 8.2	4.3	2.5	3.1	1993	3.4	1995	1997	1999	2000	2001
2 B	E	30.5			••••															
3 C	S			13.7	3.6															
4 D	K	15	2.4	3	1 0	16	1 9	1 3	17	2.2	3 1	4.6								
5 F	R	1.5	2.4 6.5	39	7.3	3.1	1.0	21	2.8	2.2 8.2	3.4	4.0 13.3	2.5	3	34	15	21	11.9		16
7 D	D		0.0	0.0	1.0	0.1	Ũ		2.0	0.2	0.1	10.0	2.0	Ũ	0.1	1.0		11.0		1.0
8 D	E	27.8			8.3	3	2.4	9.2					_							
9 G	iR	52.8	59.7	7.7	3.6	6.6	8	17.2	8.7	6	2.7	10.1	1.5	25.2		11.1	55.6	26.7		
10 H					5.4 1.8	10.0 3.1	13.5 4 7	5.8	52	38.3	13	33	1.8							
12 IE	5				1.0	5.1	4.7	2.0	5.2	1.7	4.5	5.5	1.0							
13 IT	CNR									3.9	3.8									
14 N	L	_ 1	3.9	1.1	0.5	2	3.3	0.7	2.7	2.2	1.2									_
15 N	0	7.7	15.2	1.5	2.9	1.2	6.3	7.2	2.1	1.7	0.8	3.6	0.2	0.9	1.9	2.4	1.7	4		5
10 F	L T	0.0	10.2	5	0.9	3	4.2	4.5		52	7.4	59		6.3	11.9	12.9	29	53		15.2
18 R	0				0.0					0.2		00		0.0	11.0	12.0	2.0	0.0		10.2
19 E	S									2.2	3.4		5.2	2.1	4.4	4.2	11.6	12.6		16.7
20 S	E IVL	9.2	3.9	4 5	18.3	2.3	5.8	1.8	5.2	10.3	5.3	1.7	2.8	0.4	0.0	0.4				07
21 0	H OV/RH	13.3	2.2	4.5		7.8	1.8	5.3	0.3	1.7	2.2	2.4	1.8	0.4	3.3	3.1	1.4	1		0.7
22 G	iB	50.6	2.4	14.8	1.8	2.3	13	2.9	2.1	1.7	11	5.4	2	3.5	1.7	2.9	1.4	3.3		2.8
24 Y	U																			
25 S	E SNV																			
26 C	A	37.7																		
27 U 28 U	S FPA								77											
29 C	A CONC.																			
30 IT	ISPRA																			
31 S	K L TNO				14 5	47	1.6	24	10.0											
Gml. 25 IE	E ESB				14.5	4./	1.0	3.4	3.8											

*Table 4.21: Random error (2RSD%) for SO*² *in air in absorbing solution in the different laboratory intercomparisons.*

Table 4.22: Systematic error (RB%) for SO₂ in air absorbing solution in the different laboratory intercomparisons.
	(/ 5	-				1			
	NO2 air	11 1989	12 1991	13 1993	14 1994	15 1995	16 1997	17 1999	18 2000	19 2001
1	AT									
2	BE									
3	CS	0.7	10.9	1.8	2.2	2.8	0.4	1.3		14
4	DK			1.3	0.9	1	1.8	0.7		1.1
5	FI									
6	FR									
7	DD/DE (Leip.)									
8	DE	1.6	3.1	0.9	1.5	0.4	0.7	1.7		
9	GR		5.1	2.9	2	1.7	2.8	2.7		
10	HU	7.5	4.5	17.9	41.2	22.8	0.5	4		1.1
11	IS									
12	IE MetServ	2.3	9.6	4.1	4.6	4.6	3.2	5.4		1.4
13	IT CNR			3.7						
14	NL						<u> </u>			
15	NO DI Mat	3.3	3.9	5.1	1.1	1.2	6.7	1.7		1.8
16	PL Met.	1	5	4.2	4.1	2	2.8	5		1.8
17	PI					10.0	40 7			
10	RU		10.1	17	16.2	12.0	0.1	1		247 1
20		33	2.1	1.2	10.2	4.3	0.1	27		1.4
20		5.5	2.0	1.2	4	0.5	0.2	2.1		1.4
21	SOV/RU	83	20.1	6.8	32	39	34	13		18
23	GB	0.0	20.1	0.0	12	1.8	0.4	3		4
24	YU		3.5	4	21	3.3	37	54		32
25	SE SNV		010	0.7		0.0	•	0.1		0
26	CA AES									
27	US ILL.									
28	US EPA									
29	CA CONC.									
30	IT ISPRA									
31	SK		7.3		5.5	3.4	4.8	4.4		2.9
32	LT			6.1	4.3	2.5	3	3.4		
33	LV				2.8	3.7	3.6	3.7		5.4
34	TR			2.9	1.7	3.4	3	4.7		3.2
35	HR					6.1	0.4	1.3		1.4
36	SI			4.1	2.4	1	0.6	4.4		0.7
37	IE EPA/EBS	2.2						4 -		
38						0.0	10.1	1./		1.1
39	PL (ENV.)					2.2	10.1	3.1		2.9
40							E 2			
41 42	EE Idilu IS (Ork)						5.5			
42 Cml 10										
0111. 19										

Table 4.23: Random error (2RSD%) for NO_2 in air in the different laboratory intercomparisons.

	NO2 ai	r	11	12	13	14	15	16	17	18	19
1	AT		1969	1991	1992	1994	1990	1997	1999	2000	2001
2 3 4 5	BE CS DK FI		-6.0	-24.1 📕	-2.1 3.2	-4.6 -3.2	0.6 -1.4	-0.8 -0.5	-6.6 -1.6		-7.0 -4.4
6 7 8 9 10	FR DD/DE DE GR HU	(Leip.)	-3.7	-4.9 -8.6 -10.9	-1.0 -2.9	-2.8 -3.9 -48 1	0.0 -2.0	1.7 7.8 -1 0	2.9 -2.5 0 4		-2 6
11 12 13	IS IE IT	MetServ CNR	-3.0	-14.7	0.6 -3.7	16.9	1.2	8.3	2.9		4.0
14 15 16 17	NO PL PT	Met.	-6.3 12.4	-5.0 -13.3	-13.8 -0.2	1.6 -1.9	-4.8 2.8	-14.1 -4.7	-1.6 2.5		-0.4 -3.1
18 19 20 21	RO ES SE CH	IVL	0.3	1.5 -9.1	-15.0 -3.7	<mark>20.1</mark> -8.2	54.6 -8.2 -1.0	62.2 -5.3 0.2	-2.9 -2.9		1318.5 -1.8
22	SOV/R	U	-28.0	-44.8	-8.9	-9.4	-7	-3.1	9.0		1.8
23 24 25 26 27	GB YU SE CA US	SNV AES ILL.		-1.3	9.9 0 .7	4.6 7.7	4.0 7.2	-0.9 7.2	-5.7 -3.7		-0.9
28 29	CA	EPA CONC.									
30 31 32	IT SK LT	ISPRA		-11.5	-0.7	-12.1 -7.4	-8.9 4.4	-10.5 -0.4	-14.4 -3.7		-11.0
33 34 35	LV TR HR				-6.5	11.7 -3.1	-1.8 -4.6 24.5	-3.4 -6.4 -3.6	-5.7 6.6 -0.8		-7.5 -3.5 -0.4
36 37	SI	EPA/ERS	63		-15.4	8.3	1.7	6.6	7.4		-3.5
38 39 40	EE PL (Env	v.)	0.0				-6.8	6.7	2.5 -5.7		-2.2 3.1
40	EE Tar	tu						5.0			
42 Gml.1	IS (Ork 9 TNO	.)									

*Table 4.24: Systematic error (RB%) for NO*² *in air in the different laboratory intercomparisons.*

Annex 5

Note to be attached to the German EMEP data (by Markus Wallasch, QA–Manager)

Note to be attached to the German EMEP data

author Markus Wallasch (QA-Manager)

Langen (Germany), 07 March 2003

This note refers to:

- SO_2 measured by the TCM method for the period of time from the begin of measurements until end of year 2000.

- NO_2 measured by the Salzmann method the period of time from the begin of measurements until end of year 2001.

- Sulfur in Particles by the X-ray fluoreszens method in the period of time from the begin of measurements until 31. August 1999.

Parallel measurements over long periods suggest systematic errors for the above mentioned components. Therefore, it is recommended to rescale the data according to the equation given bellow before making comparisons with other measurements or model calculations. The details of the parallel measurements and on how the rescaling equations are derived will be given in an additional paper. It should be noted here, that these relations are to be understood in a statistical sense, i.e.they apply to a large ensemble with a considerable scatter of the "data points". So the rescaling may be most helpful, if one is interested in long term averages (for example, annual averages). They are of a more limited usefulness if individual values or short periods are considered. Therefore, it was decided to keep the data in the database as they are. Instead, it is left to the user of the data if he or she likes to follow the recommendation and rescale the data before use, as this decision may depend crucially on the purpose of the study. **Rescaling Equations:**

for SO_2 :	Y = 1.46 X
for NO_2:	$Y = 1.50 X + (1.0 - 6.0 EXP(-0.1 X^2))$ if negative values of Y occur, these must be
	discarded !
for Sulfur in Particles :	Y = 1.50 X

where: X: old concentration in μ g m⁽⁻³⁾, daily values Y: new concentration in μ g m⁽⁻³⁾, daily values EXP: exponential function

Annex 6

Estimating errors from laboratory comparisons

Systematic errors or bias in the laboratory analyses give a constant shift in the results from the expected ones at a particular concentration level. It is assumed that laboratories taking part in comparisons will obtain results near the expected ones when this bias is removed, and that the differences between expected and obtained results more often will be close to zero than not. A triangular distribution, based upon this assumption, can be used to quantify the random errors in the laboratory results (Eurachem, 2000).

The triangle distribution is symmetric with a baseline 2a. The height in the triangle will be 1/a when the triangle area equals 1. The standard uncertainty is given by

$$u(x) = \frac{a}{\sqrt{6}} \tag{1}$$

and more than 95 % of the data will be within $\pm 2 \cdot u(x)$. The distance from –a to a (i.e. 2a) is called the range. When applied on the laboratory comparison results, the range equals the distance between the largest and smallest of the four differences between expected and found concentrations. As long as the bias can be assumed to be constant for the samples in the comparison of a specific component, it cannot have an effect on the distance corresponding to 2a. The bias may be dependent upon the concentrations, but can be considered approximate constant for the concentrations used here in the comparison of the main components in precipitation, since the differences between the concentrations are small.

L and T represent the laboratories' and the expected concentrations respectively, and D is the difference. The difference for the lowest concentration is

$$\mathbf{D}_1 = \mathbf{L}_1 - \mathbf{T}_1 \tag{2}$$

and the differences are D₁, D₂, D₃, D₄ in increasing order assuming 4 test samples.

The range is $D_4 - D_1$ and the standard uncertainty for the differences u(D) becomes

$$u(D) = \frac{(D_4 - D_1)}{(2 \cdot \sqrt{6})}.$$
(3)

The average expected concentration T for the four samples is given by

$$T = \frac{(T_1 + T_2 + T_3 + T_4)}{4}$$
(4)

The relative standard uncertainty, RSD, for 4 samples is given by $\frac{u(D)}{T}$, or

$$RSD = \frac{2 \cdot (D_4 - D_1 \cdot 100)}{\sqrt{6} \cdot (T_1 + T_2 + T_3 + T_4)} \%,$$
(5)

and 95 per cent of the laboratory results in this comparison are expected to be within $\pm 2 \cdot RSD$.

If the data quality objectives (DQO) likewise are looked upon as 95 percentiles, then 95 per cent of the laboratory analytical results should not be more than 10 or 15 per cent from the correct values (10 per cent for S and N containing components and 15 per cent for other components).

Correspondingly, the values $2 \cdot RSD$ should therefore be less than 10 or 15 per cent in order to comply with the DQO.

An estimation of bias in single measurements requires a long data series, and four samples as we normally have in laboratory comparison, are merely able to give an indication of the bias or a very coarse estimate.

Calculating the systematic error (RB%)

Coarse estimates may be performed in the cases where the four samples had similar concentrations and where all four laboratory results were either higher or lower than the expected concentrations. The median of the differences D_i , as defined above, was taken as a measure of the bias, B, in these cases.

$$\mathbf{B} = \mathrm{median}[\mathbf{D}_{\mathrm{i}}] \tag{6}$$

A relative bias, RB, was also calculated based upon the average expected concentration T, as defined in (4).

$$RB = \frac{4 \cdot \text{median}[D_i] \cdot 100}{(T_1 + T_2 + T_3 + T_4)}\%$$
(7)

Annex 4 gives the results from the first 19th laboratory intercomparison divided in systematic and random errors. The calculated errors (2RSD% and 2RB) have been further translated into a flag number as defined in Table 17.

Annex 7

Ion balance flags

The ion balance (IB) gives an indication of precipitation data quality since the concentrations of all negatively charged ions in a sample necessarily will have to equal the sum of the positively charged ions. When the concentrations of all major ions in a precipitation sample have been measured, a poor IB <u>may</u> therefore indicate a poor data quality, and the sample results are proposed flagged as described below.

This proposal aims at flagging data that are considered to have a quality less good than could be expected from EMEP's Data Quality Objectives (DQO). The flagged data are divided into two groups; data that are considered to have a quality sufficiently high to be useful for EMEP and therefore are considered valid and should be used, and secondly data that are considered invalid. The criteria are summarised in Figure A7.2.

A good IB is not a guarantee for a high data quality. It is important to bear in mind that even though a general good IB indicates adequate sample handling and a high analytical chemical skill in the laboratory, other factors may reduce the data applicability for EMEP and the overall data quality; e.g. local sources or sampling problems. Even a sample contamination will not necessarily be detected through an ion balance calculation, i.e. when the contamination takes place before the analyses have been started.

The flags described below are suggested linked to each result from a specific precipitation sample. Other information about the sample results may, however, override the IB flagging, and validate some of the results.

Random errors have been used below as a basis for the criteria. Systematic errors are considered either to be insignificant or already corrected for.

Definitions

 C_i is the concentration of ion type *i* in a specific sample, expressed in $\mu e/L$. No index has been used for sample number below. IS is the sum of all ion concentrations, and ID is the difference between the sum of the cation concentrations and the sum of the anion concentrations. Both IS and ID are expressed in $\mu e/L$. ID would in ideal cases be zero. The ion balance, IB, expresses this difference ID in per cent of the sum of all concentrations IS.

$$IS = \sum_{\text{cations}} C_i + \sum_{\text{anions}} C_i$$
(1)

$$ID = \sum_{\text{cations}} C_i - \sum_{\text{anions}} C_i$$
(2)

$$IB = (ID/IS) \cdot 10^2 \tag{3}$$

All measurements have in reality some errors attached them, both systematic and random, and the ion difference ID and the balance IB will never be exactly zero. S_{ci} is defined as the standard uncertainty in the concentration of ion type *i* for a large number of samples or analyses at concentration C_i and is expressed in $\mu e/L$.

 S_{IB} is the corresponding standard uncertainty in IB that can be calculated from the uncertainties S_{ci} . S_{IB} 's unit is as IB's per cent, and is given by

$$S_{IB}^{2} = (1/IS^{2}) \left\{ \sum_{\text{anions}} (IB + 100)^{2} S_{ci}^{2} + \sum_{\text{cations}} (IB - 100)^{2} S_{ci}^{2} \right\}$$
(4)

The standard uncertainty in the concentrations, S_{ci} , normally increases with the concentrations themselves. S_{IB} will depend on the composition and concentrations in the sample and increases as IS decreases, i.e. S_{IB} will be high when concentrations are low.

Since it is assumed that all ions have been analysed and all systematic errors removed, IB equals zero and equation (4) is reduced to

$$S_{IB} = \left(\begin{array}{c} \left(\sum_{all \text{ ions}}^{2} \right)^{\frac{1}{2}} / IS \end{array} \right) \cdot 10^{2}$$
(5)

Normal distributions have been assumed below, and S_{ci} may be estimated from repeated analysis of the sample.

Ion balance in data complying with the DQO

Instead of estimating S_{ci} from analyses, S_{IB} can be estimated from the DQO if S_{ci} can be expressed by the DQO. The DQO, which give the maximum errors in the analytical chemical work, will therefore now be considered as 95 per cent confidence limits for each chemical specie rather than strict upper limits. The DQO for a specific ion *i* will in this case span an interval of concentrations equal to ± 1.96 S_{ci}, assuming normal distribution. This assumption obviously relaxes the requirements to analytical accuracy somewhat since 5 per cent of the values will be outside the DQO.

The requirements given in the DQO (EMEP/CCC-Report 1/95) are that a concentration of component *i*, C_i , should be within $C_i \pm a \cdot C_i$ where a is either 0.10 or 0.15 (except for the very lowest concentrations).

When combining this with the assumptions in the preceding paragraph,

$$\mathbf{a} \cdot \mathbf{C}_{\mathbf{i}} = 1.96 \cdot \mathbf{S}_{\mathbf{c}\mathbf{i}}, \text{ or }$$

$$S_{ci} = (a/1.96) \cdot C_i$$
 (7)

where a=0.10 for SO_4^{2-} and NO_3^{-} , and a=0.15 for all other ions.

Equations (7) and (5) can be used to estimate the expected uncertainty in IB, i.e. the limits for IB for measurements that comply with the DQO, given the assumptions above.

Calculations of ion balance in data complying with the DQO

Estimations of S_{IB} have been carried out for a series of different concentrations and compositions from the DQO. The calculations demonstrate that S_{IB} depends on the composition of the sample as well as on the concentrations, and that S_{IB} obtains its highest values for two-component samples e.g. of ammonium sulphate with other components at the detection limit. The lowest S_{IB} occurs in samples with approximately equal concentrations of all ions (i.e. for EMEP, concentrations of sulphate, nitrate and chloride all being equal and twice the concentrations of ammonium, hydrogen ions, sodium, magnesium calcium, and potassium). Figure A7.1 presents the approximate 95 % confidence limits (i.e. $\pm 2 S_{IB}$), which can be expected from the DQO for two different sample types.

Assuming negligible systematic errors, the 95% confidence interval ($\approx 2 \cdot S_{IB}$) is expected to correspond to 7.1 to 10.8 per cent for a sum of concentrations (IS) at 100 µe/L (Figure A7.1) for the two compositions above. At IS equal to 1000 µe/L, the confidence interval correspond to ±4.6 to ±9.0 per cent. For IS less than 100 µe/L, S_{IB}, increases strongly.

Ion balance in samples with pH larger than 5.5

It is well known that samples having pH values above 5.5-6.0 often have an apparent deficit of anions (e.g. Schaug et al., 1997). This seems to differ from one measurement site to the next and is not yet well understood. Obviously this could be explained by components with weak acidic functional groups that are not analysed, e.g. such as organic substances. The estimations above can therefore often not easily be applied to precipitation samples with pH above 5.5. Separate criteria for samples with and without pH > 5.5 have therefore been proposed below.

Sum of all ion concentrations IS (ue/L)

Figure A7.1: 95-confidence interval for the ion balance for data complying with the DQO. Upper and lower graphs for a solution of ammonium sulphate with other components at the detection limit. The two other graphs are based on a solution with "equal" concentrations as defined above. It is assumed that all components have been measured and that any significant bias has been removed.

Criteria for flagging ion balances in precipitation samples with pH ≤ 5.5

The estimated standard uncertainties S_{IB} and confidence intervals making use of the two compositions in Figure A7.1 have been used to set quality criteria for precipitation samples, a distinction was, however, made between samples with an ion sum IS higher and lower than 100 μ e/L.

IS $\geq 100 \,\mu\text{e/l}$ Samples with an ion balance within $\pm 10\%$ can be considered to contain valid data in accordance with the DQO. *Valid, non-flagged precipitation data should therefore have an ion balance within* $\pm 10\%$.

Correspondingly its suggested that samples within an ion balance twice the limits in Figure A7.1 should be considered valid, but should be flagged to indicate that the quality is expected to be lower than targeted. *Valid but flagged data should have an ion balance between* -20 to -10% or +10 to +20%.

Results from samples outside 20% can be considered invalid. 20% corresponds approximately to the confidence limits for data within 2 DQO. IS < 100 μ e/L

When the sum of all ion concentrations is less than 100 μ e/L, the criteria have been based on the ion difference ID (in μ e/L) rather than IB due to the strong increase in IB with decreasing IS. When IS is exactly 100 μ e/L, the IB limits 10 and 20% correspond exactly to ID equal to 10 and 20 μ e/L, as seen from (3).

For IS < 100 μ e/L these limits at 10 and 20 μ e/L are suggested kept unchanged, i.e.a. sample with an ion difference within $\pm 10 \mu$ e/L can be considered valid, and within $\pm 20 \mu$ e/L as valid, but is to be flagged.

Samples with ion differences outside $\pm 20 \ \mu e/L$ are considered to contain invalid data.

Criteria for flagging ion balances in precipitation samples with pH > 5.5

As mentioned above there is often an apparent anion deficit that is not well understood, and the size of the deficit is seen different from one site to the next. Relaxed criteria should therefore be applied at present. The criteria have been based on the discussion above as well as on inspection of today's ion balances. They should take care of the ion balance differences EMEP have, and take care of major errors without excluding too much data.

 $IS \ge 100 \ \mu e/L$

Since there is an apparent deficit of anions ("too much cations"), the criterion for valid non-flagged data has been made less strict when this occurs. *It is suggested to set an upper limit at IB* +20% *for valid non-flagged data*. The corresponding limit at lower pH values (above) was 10%. *The criteria for valid non-flagged data is suggested to be kept at IB* \geq -10% *as for pH* < 5.5 *on the "negative IB side"*.

When the ion balance is larger than +20%, the data still have been suggested valid, but should be flagged. This means that data will not be proposed invalidated due to a high ion balance alone.

On the "negative IB side" the criterion have been proposed kept unchanged, i.e. if $-20\% \leq IB \leq -10\%$ data can be considered valid, but will be flagged.

If IB < -20% the data are considered invalid.

 $IS < 100 \ \mu e/L$

For low concentration samples with IS < 100 μ e/L the criteria can be set similar to samples with IS \ge 100 μ e/L, but replacing the ion balance IB with the difference ID.

The criteria are summarised in Figure A7.2.

Figure A7.2: Criteria when the sum of ions $IS \ge 100$ ueq/L is based on the ion balance in per cent. Criteria when the sum of ions IS < 100 ueq/L is based on the difference between cation and anion concentrations in ueq/L.

References

Schaug, J., Semb, A., Hjellbrekke, A.-G., Hanssen, J.E. and Pedersen, A. (1997) Data quality and quality assurance report. Kjeller, Norwegian Institute for Air Research (EMEP/CCC-Report 8/97).