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Introduction
The SIR (Sequential Importance 
Resampling) assimilation method 
(Van Leeuwen, 2003; Doucet, 
2001) is tested on a 1D 
atmospheric advection-diffusion 
model. Simulated experiments, 
defining a true state of input 
parameters and resulting model 
concentrations, are performed 
to see if the method can handle 
both systematic (bias) and 
unsystematic (random) errors in 
the input data, and still be able 
to produce assimilated values 
close to the true state. The effect 
on the performance of using 
different observations likelihood 
functions, such as Gaussian 
and Lorentz (Student’s t) 
distributions, are also analysed.

Model description
The 1D model tested is:

where c is a space (x) and time 
(t) varying concentration (µg/
m) of some species, u is the 
wind speed, k

X
 a turbulent eddy 

diffusivity coefficient, and q 
an assumed emission. In (1) 
boundary conditions and initial 
conditions are given by c(x,t) 
= c

B
 for x = 0 and x = n x and 

c(x,0) = 0. The physical domain 
[0, n x] is divided into n grid 
cells each with length x. For 
the tests performed here n = 50 
and x = 1000 m. The equation 
is discretized and solved on an 
hourly basis using hourly input 
data of u, k

X
, q and c

B
, and 

separate operators for advection 
(Bott, 1989) and diffusion (fully 
explicit scheme).

Method description
The SIR-method generates an 
ensemble of possible model 
states {x(i), i = 1,…,N} by 
randomly drawing selected input 
parameters to the model. The 
ensemble represents a discrete 
approximation of the Bayesian 
(Box and Tiao, 1992) prior and 
posterior probability density 
functions (PDFs) of the true 
model state xt given the model 
forecasts and observations. 
The number N of ensemble 
members is kept constant at all 
time steps.
 The assimilated model state 
is calculated as:

where w
i
 = 1/N for i = 1,...,N 

represents the ensemble 
weights. Updated weights  
are calculated using a Gaussian 

or Lorentz shaped likelihood 
function based on available 
observations. In the resampling 
step, ensemble members that 
correspond well with the 
observations (high weights) will 
be kept and copied, while those 
that correspond poorly with 
the observations (low weights) 
will be removed. After the 
resampling step, all ensemble 
members again have weights 
1/N.
 Eq. (2) represents a variance-
minimizing estimate of the true 
model state xt even for non-linear 
models with non-Gaussian error 
structures. The ensemble size 
N needed in practice depends 
on the model, the number of 
state variables, and the number 
and position of observations. A 
trial and error procedure must 
usually be exercised in order 
to find the optimal number of 
ensemble members.

Experimental set-up 
The model (1) is run for 2 
weeks (336 hours). Realistic 
hourly values of wind speed 
(u) and temperature difference 
( T

10m-2m
) is provided from a 

meteorological station close to 
Oslo, Norway. A meteorological 
preprocessor is used to calculate 
horizontal turbulence intensities 

v
 and diffusion coefficients 

k
X
 as 0.1· x·

v
 (Slørdal et 

al., 2003). Emissions (q) and 
background concentrations (c

B
) 

are set equal to 10-3 µg/m·s and 
10 µg/m respectively for all 
hours. 
 The model state vector x is 
defined as the concentration 
grid vector c consisting of 50 
state variables x

i
 = c

i
 for i = 

1,...,50. In order to create the 
initial ensemble and update 
the ensemble from one time 
step to the next, actual input 
parameters u, k

X
, q and c

B
 to 

the model are drawn randomly 
using  lognormal distributions. 
The hourly observed values are 
used as mean values in these 
distributions, and the standard 
deviations are assumed to be 
40% of these values. The values 
are set equal for all grid cells. 

 True values of the above 
parameters are defined using 
the expectance values and 
an assumed bias factor f

b
 

as follows: ut = E(u)·f
b
, kt

 
= 

E(k
X
)·f

b 
and qt = E(q)/f

b
, where 

f
b
 = 1.2 (20% bias). The true 

background values are always 
assumed to be unbiased, i.e., ct 
= E(c

B
). Pseudo-observations 

are assumed to be Gaussian or 

Lorentz-distributed around the 
true model concentrations using 
a standard deviation equal to 5% 
of the true value for each hour.

Results
Hourly concentration values 
from grid cell 27 are shown 
in Figs. 1-4. Only the tests 
performed with the Lorentz 
distribution are shown here. 
Generally it was found that this 
gave more stable and consistent 
improvements than using a 
Gaussian distribution function. 
The assimilated concentrations 
(red) lies consistently closer 
to the true concentrations 
(blue) than the unassimilated 
concentrations (green), although 
the improvement varies with 
time. When it is small or 
negative it is due to ensemble 
collapse, i.e., that there are 
only a few unique members in 
the ensemble. Increasing the 
ensemble size N from 25 to 100, 
and the number of observations 
from 1 (cell 10) to 2 (cells 10 
and 25) improves the results. 
Increasing N further did not lead 
to any great improvements, since 
the model error statistics seems 
to be well represented with 100 
ensemble members. Increasing 
the number of observations to 
more than 2 does not improve 
results significantly. This is 
probably due to the 1D structure 
of the model, and the fact that the 
parameters are distributed equal 
for all grid cells. Most of the 
information about the true state 
is then apparently contained in a 
few observations. 

Conclusion
The SIR-method seems to 
work well on the 1D model 
(1) reducing both bias and 
uncertainty if observations 
are available. The simulated 
experiments performed indicate 
that most improvement is achived 
with a modest ensemble size of 
between 25 and 100 members 
and only 1 or 2 observations. 
 Our other experience of 
using the SIR-method on this 
model can be summarized as 
follows:

 Lorentz (Student’s t) 
likelihood functions give 
generally better and more 
consistent results than 
Gaussian functions.

 If more observations 
are introduced, a larger 
ensemble size is needed to 
obtain improved results and 
to avoid ensemble collapse.
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