Skip to content

Can we avoid conflict between farming and biodiversity?

Illustrasjonsfoto: Colourbox

Data on 50 different agricultural products in around 200 countries has given scientists an overview of what kind of “biodiversity footprint” different foods have. This knowledge reveals where there can be conflict between food production and the preservation of biological diversity – but can also lead to more sustainable eating habits.

Our modern lifestyle causes alarming damage to the atmosphere and water supplies. Farming is one of the leading drivers of biodiversity loss, and the reason why governments, industry, and farmers are working to promote sustainable agriculture. To accomplish this, they need quantitative information about the kind of impact or “footprint” different types of crops, agricultural areas and farming practices have on biological diversity.

Protecting diversity while preserving food security

Researchers in Norway, the Netherlands, and Japan has been working to fill in this missing information. As a basis, they have used records of global supply chains, agricultural production data, and new ecological models. The latter estimate the conservation value of different areas.

Their results were published in Proceedings of the National Academies of Science on May 30.

The carbon, land, and water footprints of the agriculture industry are already known. But because it has been difficult to determine how much damage agriculture does to biodiversity, that factor has often been omitted when calculating the total biodiversity footprint for an agricultural commodity.

The results from the new study will be helpful when governments design policies that will both protect biodiversity and preserve global food security.

“Food production remains the main cause of biodiversity loss,” explained one of the authors of the study, RIHN Associate Professor Dr. Keiichiro Kanemoto. “However, there is a painful lack of systematic data on which products and which countries contribute the most to this loss. Our research spatially overlaps agricultural land and species habitats to identify which crops cause the most pressure.”

The results have been made publicly available on Google Earth Engine, a cloud computing platform used for environmental analyses.

Where food is grown matters

Senior scientist Daniel D. Moran is one of the authors of the study. Photo: Titt Melhuus

In the study, the researchers divided areas for agriculture into four tiers of conservation priority, from lowest to highest. Then, they looked for the correlation between each agricultural commodity and their production on land of different priority levels. The researchers found that about a third of all farming occurs in areas deemed as highest conservation priority.

Some staple commodities, such as beef, rice, and soybeans, tend to be produced in high conservation priority areas. At the same time, other important commodities, such as barley and wheat, are predominantly sourced from lower risk areas.

The study further shows the effects of international trade. Coffee and cocoa are primarily grown in high conservation priority areas in equatorial nations, but are largely consumed in richer nations like the United States and members of the European Union. At the global level, its high demand for multiple commodities makes China the biggest influencer of food production in high priority conservation areas.

“A surprising takeaway for me was how much the impact of the same crop can vary based on where it is sourced from,” says Senior Scientist Daniel Moran of the Climate and Environmental Institute NILU, who contributed to the work.

He points to beef and soybeans which are grown in high conservation priority areas in Brazil but not in North America. Similarly, wheat is grown in lower conservation priority areas in Eastern Europe than in Western Europe.

Different nations can have sharply different biodiversity food footprints. The United States, EU, China, and Japan all depend heavily on imports to satisfy their demand for beef and dairy. In Japan, more than one quarter of the beef and dairy Japan consumes comes from high conservation priority areas. For the other regions, that number is closer to just ten percent.

“That suggests there are opportunities to change the biodiversity footprint of food consumption by simply changing our sourcing of food products” says Kanemoto.

Can climate change lead to future conflicts?

The changing climate is expected to alter both cropping patterns and available habitants.

The researchers evaluated several scenarios to see whether the spatial conflict between wild biodiversity and farming is likely to increase or decrease under predicted 2070 temperatures. As a response to climate change, species are likely to colonize new territories. This could result in the emergence of new high conservation priority areas or mitigate conflicts in current conservation hotspots.

They are quick to point out that the results do not estimate actual conflict between agriculture and biodiversity. Instead, they show only potential conflict that could arise when agriculture and conservation priority co-exist within the bounds of each 60km2 grid cell used in the study.

“Our spatial approach is a valuable complementary method with other standard techniques to evaluate the impact agriculture has on biodiversity. The knowledge gained from our study should help reduce the trade-off many nations associate with agriculture production and environmental protection,” says Kanemoto.

The results can be viewed in an interactive map at https://agriculture.spatialfootprint.com/biodiversity, as shown in the picture below:

Verdenskart som viser hvor ulike matvarer blir dyrket.