Found 819 publications. Showing page 9 of 35:
2025
Using meteor wind data from the Super Dual Auroral Radar Network (SuperDARN) in the Northern Hemisphere, we (1) demonstrate that the migrating (Sun‐synchronous) tides can be separated from the nonmigrating components in the mesosphere and lower thermosphere (MLT) region and (2) use this to determine the response of the different components of the semidiurnal tide (SDT) to sudden stratospheric warming (SSW) conditions. The radars span a limited range of latitudes around 60°N and are located over nearly 180° of longitude. The migrating tide is extracted from the nonmigrating components observed in the meridional wind recorded from meteor ablation drift velocities around 95‐km altitude, and a 20‐year climatology of the different components is presented. The well‐documented late summer and wintertime maxima in the semidiurnal winds are shown to be due primarily to the migrating SDT, whereas during late autumn and spring the nonmigrating components are at least as strong as the migrating SDT. The robust behavior of the SDT components during SSWs is then examined by compositing 13 SSW events associated with an elevated stratopause recorded between 1995 and 2013. The migrating SDT is seen to reduce in amplitude immediately after SSW onset and then return anomalously strongly around 10–17 days after the SSW onset. We conclude that changes in the underlying wind direction play a role in modulating the tidal amplitude during the evolution of SSWs and that the enhancement in the midlatitude migrating SDT (previously reported in modeling studies) is observed in the MLT at least up to 60°N.
2019
Few studies report the occurrence of microplastics (MP), including tire wear particles (TWP) in the marine atmosphere, and little data is available regarding their size or sources. Here we present active air sampling devices (low- and high-volume samplers) for the evaluation of composition and MP mass loads in the marine atmosphere. Air was sampled during a research cruise along the Norwegian coast up to Bear Island. Samples were analyzed with pyrolysis-gas chromatography-mass spectrometry, generating a mass-based data set for MP in the marine atmosphere. Here we show the ubiquity of MP, even in remote Arctic areas with concentrations up to 37.5 ng m−3. Cluster of polyethylene terephthalate (max. 1.5 ng m−3) were universally present. TWP (max. 35 ng m−3) and cluster of polystyrene, polypropylene, and polyurethane (max. 1.1 ng m−3) were also detected. Atmospheric transport and dispersion models, suggested the introduction of MP into the marine atmosphere equally from sea- and land-based emissions, transforming the ocean from a sink into a source for MP.
2023
2019
The Adverse Outcome Pathway (AOP) framework plays a crucial role in the paradigm shift of toxicity testing towards the development and use of new approach methodologies. AOPs developed for chemicals are in theory applicable to nanomaterials (NMs). However, only subtle efforts have been made to integrate information on NM-induced toxicity into existing AOPs. In a previous study, we identified AOPs in the AOP-Wiki associated with the molecular initiating events (MIEs) and key events (KEs) reported for NMs in scientific literature. In a next step, we analyzed these AOPs and found that mitochondrial toxicity plays a significant role in several of them at the molecular and cellular levels. In this study, we aimed to generate hypothesis-based AOPs related to NM-induced mitochondrial toxicity. This was achieved by integrating science-based information collected on NM-induced mitochondrial toxicity into all existing AOPs in the AOP-Wiki, which already includes mitochondrial toxicity as a MIE/KE. The results showed that several AOPs in the AOP-Wiki related to the lung, liver, cardiovascular and nervous system, with extensively defined KEs and key event relationships (KERs), could be utilized to develop AOPs that are relevant for NMs. Our results also indicate that the majority of the studies included in our literature review were of poor quality, particularly in reporting NM physico-chemical characteristics, and NM-relevant mitochondrial MIEs were scarcely reported. This study highlights the potential role of NM-induced mitochondrial toxicity in human-relevant adverse outcomes and identifies useful AOPs in the AOP-Wiki for the development AOPs that are relevant for NMs.
2023
2020
2018
Energetic particle precipitation is one of the main processes by which the sun influences atmospheric composition and structure. The polar middle atmosphere is chemically disturbed by the precipitation-induced production of nitric oxides (NOx) and hydrogen oxides (HOx) and the associated ozone (O3) loss, but the importance for the dynamics is still debated. The role of precipitating medium energy electrons (MEEs), which are able to penetrate into the mesosphere, has received increased attention, but has only recently begun to be incorporated in chemistry-climate models. We use the NCAR Whole Atmosphere Community Climate Model (WACCM) to study the climate impact from MEE precipitation by performing two idealized ensemble experiments under pre-industrial conditions, with and without the MEE forcing, over the period of the solar cycle 23 (only full calendar years, 1997–2007). Each experiment includes 20 11-year ensemble members, total 220 years. Our results indicate a strong month-to-month variability in the dynamical response to MEE throughout the winter period. We find a strengthening of the polar vortex in the northern hemisphere during December, but the signal decays rapidly in the following months. The polar vortex strengthening is likely attributable to planetary wave reduction due to increased zonal symmetries in upper stratospheric ozone heating, initially triggered by MEE-induced NOx advected into the sunlit regions. We also find a similar early winter polar vortex strengthening in the southern hemisphere during June. Changes in mean meridional circulation accompany these anomalous wave forcings, leading to dynamically-induced vertical temperature dipoles at high latitudes. The associated weakening of the stratospheric mean meridional circulation results in an upper stratospheric polar ozone deficit in early winter. This polar cap ozone deficit is strongest in the southern hemisphere and contributes to a polar vortex weakening in late winter, in concert with increased planetary wave forcing. In both hemispheres, the stratospheric polar vortex signal seems to migrate downwards into the troposphere and to the surface.
2020
Soil uptake of VOCs exceeds production when VOCs are readily available
Volatile organic compounds (VOCs) are reactive gaseous compounds with significant impacts on air quality and the Earth's radiative balance. While natural ecosystems are known to be major sources of VOCs, primarily due to vegetation, soils, an important component of these ecosystems, have received relatively less attention as potential sources and sinks of VOCs. In this study, soil samples were collected from two temperate ecosystems: a beech forest and a heather heath, and then sieved, homogenized, and incubated under various controlled conditions such as different temperatures, oxic vs. anoxic conditions, and different ambient VOC levels. A dynamic flow-through system coupled to a proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-MS) was used to measure production and/or uptake rates of selected VOCs, aiming to explore the processes and their controlling mechanisms. Our results showed that these soils were natural sources of a variety of VOCs, and the strength and profile of these emissions were influenced by soil properties (e.g. moisture, soil organic matter), oxic/anoxic conditions, and temperature. The soils also acted as sinks for most VOCs when VOC substrates at parts per billions levels (ranging between 0.18 and 68.65 ppb) were supplied to the headspace of the enclosed soils, and the size of the sink corresponded to the amount of VOCs available in the ambient air. Temperature-controlled incubations and glass bead simulations indicated that the uptake of VOCs by soils was likely driven by microbial metabolism, with a minor contribution from physical adsorption to soil particles. In conclusion, our study suggests that soil uptake of VOCs can mitigate the impact of other significant VOC sources in the near-surface environment and potentially regulate the net exchange of these trace gases in ecosystems.
2023
Frequency of extreme precipitation increases extensively with event rareness under global warming
The intensity of the heaviest extreme precipitation events is known to increase with global warming. How often such events occur in a warmer world is however less well established, and the combined effect of changes in frequency and intensity on the total amount of rain falling as extreme precipitation is much less explored, in spite of potentially large societal impacts. Here, we employ observations and climate model simulations to document strong increases in the frequencies of extreme precipitation events occurring on decadal timescales. Based on observations we find that the total precipitation from these intense events almost doubles per degree of warming, mainly due to changes in frequency, while the intensity changes are relatively weak, in accordance to previous studies. This shift towards stronger total precipitation from extreme events is seen in observations and climate models, and increases with the strength – and hence the rareness – of the event. Based on these results, we project that if historical trends continue, the most intense precipitation events observed today are likely to almost double in occurrence for each degree of further global warming. Changes to extreme precipitation of this magnitude are dramatically stronger than the more widely communicated changes to global mean precipitation.
2019
In order to measure progress towards the aims outlined by the United Nations (UN) 2030 Agenda, data are needed for the different indicators that are linked to each UN Sustainable Development Goal (SDG). Where statistical or scientific data are not sufficient or available, alternative data sources, such as data from citizen science (CS) activities, could be used.
Statistics Norway, together with the Norwegian Association of Local and Regional Authorities, have developed a taxonomy for classifying indicators that are intended to measure the SDGs. The purpose of this taxonomy is to sort, evaluate, and compare different SDG indicators and to assess their usefulness by identifying their central properties and characteristics. This is done by organizing central characteristics under the three dimensions of Goal, Perspective, and Quality. The taxonomy is designed in a way that can help users to find the right indicators across sectors to measure progress towards the SDGs depending on their own context and strategic priorities. The Norwegian taxonomy also offers new opportunities for the re-use of data collected through CS activities. This paper presents the taxonomy and demonstrates how it can be applied for an indicator based on a CS data set, and we also suggest further use of CS data.
2023
2018
Recent Arctic ozone depletion: Is there an impact of climate change?
After the well-reported record loss of Arctic stratospheric ozone of up to 38% in the winter 2010–2011, further large depletion of 27% occurred in the winter 2015–2016. Record low winter polar vortex temperatures, below the threshold for ice polar stratospheric cloud (PSC) formation, persisted for one month in January 2016. This is the first observation of such an event and resulted in unprecedented dehydration/denitrification of the polar vortex. Although chemistry–climate models (CCMs) generally predict further cooling of the lower stratosphere with the increasing atmospheric concentrations of greenhouse gases (GHGs), significant differences are found between model results indicating relatively large uncertainties in the predictions. The link between stratospheric temperature and ozone loss is well understood and the observed relationship is well captured by chemical transport models (CTMs). However, the strong dynamical variability in the Arctic means that large ozone depletion events like those of 2010–2011 and 2015–2016 may still occur until the concentrations of ozone-depleting substances return to their 1960 values. It is thus likely that the stratospheric ozone recovery, currently anticipated for the mid-2030s, might be significantly delayed. Most important in order to predict the future evolution of Arctic ozone and to reduce the uncertainty of the timing for its recovery is to ensure continuation of high-quality ground-based and satellite ozone observations with special focus on monitoring the annual ozone loss during the Arctic winter.
2018
Global and regional trends of atmospheric sulfur
The profound changes in global SO2 emissions over the last decades have affected atmospheric composition on a regional and global scale with large impact on air quality, atmospheric deposition and the radiative forcing of sulfate aerosols. Reproduction of historical atmospheric pollution levels based on global aerosol models and emission changes is crucial to prove that such models are able to predict future scenarios. Here, we analyze consistency of trends in observations of sulfur components in air and precipitation from major regional networks and estimates from six different global aerosol models from 1990 until 2015. There are large interregional differences in the sulfur trends consistently captured by the models and observations, especially for North America and Europe. Europe had the largest reductions in sulfur emissions in the first part of the period while the highest reduction came later in North America and East Asia. The uncertainties in both the emissions and the representativity of the observations are larger in Asia. However, emissions from East Asia clearly increased from 2000 to 2005 followed by a decrease, while in India a steady increase over the whole period has been observed and modelled. The agreement between a bottom-up approach, which uses emissions and process-based chemical transport models, with independent observations gives an improved confidence in the understanding of the atmospheric sulfur budget.
2019
Microfibers (MF) are one of the major classes of microplastic found in the marine environment on a global scale. Very little is known about how they move and distribute from point sources such as wastewater effluents into the ocean. We chose Adventfjorden near the settlement of Longyearbyen on the Arctic Svalbard archipelago as a case study to investigate how microfibers emitted with untreated wastewater will distribute in the fjord, both on a spatial and temporal scale. Fiber abundance in the effluent was estimated from wastewater samples taken during two one-week periods in June and September 2017. Large emissions of MFs were detected, similar in scale to a modern WWTP serving 1.3 million people and providing evidence of the importance of untreated wastewater from small settlements as major local sources for MF emissions in the Arctic. Fiber movement and distribution in the fjord mapped using an online-coupled hydrodynamic-drift model (FVCOM-FABM). For parameterizing a wider spectrum of fibers from synthetic to wool, four different density classes of MFs, i.e., buoyant, neutral, sinking, and fast sinking fibers are introduced to the modeling framework. The results clearly show that fiber class has a large impact on the fiber distributions. Light fibers remained in the surface layers and left the fjord quickly with outgoing currents, while heavy fibers mostly sank to the bottom and deposited in the inner parts of the fjord and along the northern shore. A number of accumulation sites were identified within the fjord. The southern shore, in contrast, was much less affected, with low fiber concentrations throughout the modeling period. Fiber distributions were then compared with published pelagic and benthic fauna distributions in different seasons at selected stations around the fjord. The ratios of fibers to organisms showed a very wide range, indicating hot spots of encounter risk for pelagic and benthic biota. This approach, in combination with in-situ ground-truthing, can be instrumental in understanding microplastic pathways and fate in fjord systems and coastal areas and help authorities develop monitoring and mitigation strategies for microfiber and microplastic pollution in their local waters.
2021
The Monitoring Nitrous Oxide Sources (MIN
The Monitoring Nitrous Oxide Sources (MIN2OS) satellite project aims at monitoring global-scale nitrous oxide (N2O) sources by retrieving N2O surface fluxes from the inversion of space-borne N2O measurements that are sensitive to the lowermost atmospheric layers under favorable conditions. MIN2OS will provide emission estimates of N2O at a horizontal resolution of 1° × 1° on the global scale and 10 × 10 km2 on the regional scale on a weekly to monthly basis depending on the application (e.g., agriculture, national inventories, policy, scientific research). Our novel approach is based on the development of: 1) a space-borne instrument operating in the Thermal InfraRed domain providing, in clear sky conditions, N2O mixing ratio in the lowermost atmosphere (900 hPa) under favorable conditions (summer daytime) over land and under favorable and unfavorable (winter nighttime) conditions over the ocean and 2) an atmospheric inversion framework to estimate N2O surface fluxes from the atmospheric satellite observations. After studying three N2O spectral bands (B1 at 1240–1350 cm−1, B2 at 2150–2260 cm−1 and B3 at 2400–2600 cm−1), a new TIR instrument will be developed, centered at 1250–1330 cm−1, with a resolution of 0.125 cm−1, a Full Width at Half Maximum of 0.25 cm−1 and a swath of 300 km. To optimally constrain the retrieval of N2O vertical profiles, the instrument will be on-board a platform at ~830 km altitude in a sun-synchronous orbit crossing the Equator in descending node at 09:30 local time in synergy with two other platforms (Metop-SG and Sentinel-2 NG) expected to fly in 2031–32 aiming at detecting surface properties, agricultural information on the field scale and vertical profiles of atmospheric constituents and temperature. The lifetime of the MIN2OS project would be 4–5 years to study the interannual variability of N2O surface fluxes. The spectral noise can be decreased by at least a factor of 5 compared to the lowest noise accessible to date with the Infrared Atmospheric Sounding Interferometer-New Generation (IASI-NG) mission. The N2O total error is expected to be less than ~1% (~3 ppbv) along the vertical. The preliminary design of the MIN2OS project results in a small instrument (payload of 90 kg, volume of 1200 × 600 × 300 mm3) with, in addition to the spectrometer, a wide field and 1-km resolution imager for cloud detection. The instruments could be hosted on a small platform, the whole satellite being largely compatible with a dual launch on VEGA-C. The MIN2OS project has been submitted to the European Space Agency Earth Explorer 11 mission ideas.
2021
The AirGAM 2022r1 air quality trend and prediction model
This paper presents the AirGAM 2022r1 model – an air quality trend and prediction model developed at the Norwegian Institute for Air Research (NILU) in cooperation with the European Environment Agency (EEA) over 2017–2021. AirGAM is based on nonlinear regression GAMs – generalised additive models – capable of estimating trends in daily measured pollutant concentrations at air quality monitoring stations, discounting for the effects of trends and time variations in corresponding meteorological data. The model has been developed primarily for the compounds NO2, O3, PM10, and PM2.5. Meteorological input data consist of temperature, wind speed and direction, planetary boundary layer height, relative and absolute humidity, cloud cover, and precipitation over the period considered. The exact set of meteorological variables used in the model depends on the compound selected for analysis. In addition to meteorological variables introduced in the model as covariates, i.e. explanatory variables for the concentration levels, the model also incorporates time variables such as the day of the week, day of the year, and overall time, which is related to the model's trend term. The trend analysis is performed at each station separately. Thus, the model only considers the temporal features of concentrations and meteorology at a station, rather than any spatial correlations or dependencies between stations. AirGAM is implemented using the R language for statistical computing and, in particular, the GAM package mgcv. In the model, meteorological and time covariates are represented and estimated as smooth nonlinear functions of the corresponding variables. Thus, the trend term is defined and estimated as a smooth nonlinear function of time over the period selected for analysis. Once fitted to training data, the model may be used as a prediction tool capable of predicting air pollutant concentrations for new sets of meteorological and time data which are not in the training set – e.g. for cross-validation or forecasting purposes. The model does not explicitly use emissions or background concentrations – these are sought to be implicitly represented through the estimated nonlinear relations between meteorology, time, and concentrations. In addition to meteorology-adjusted trends, the program also produces unadjusted trends – i.e. trends based on the same regression set-up but only including the time covariates. Both types of trends can be output in the same run, making it possible to compare them. Ideally, the meteorology-adjusted trend will show the trend in concentration mainly due to changes in emissions or physicochemical processes not induced by changes in meteorology. AirGAM has been developed and tested primarily in trend studies based on measurement data hosted by the EEA, including the AirBase data (before 2013) and the Air Quality e-Reporting (AQER) data from 2013 and onwards. Still, the model is general and could be applied in other regions with other input data. The EEA data provide daily or hourly surface measurements at individual monitoring stations in Europe. For input meteorological data, we extract time series from the gridded meteorological re-analysis (ERA5) provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) for each monitoring station. The paper presents results with the model for all AirBase/AQER stations in Europe from the latest EEA trend study for 2005–2019.
2023
In the Barents Sea, pelagic and coastal polar bears are facing various ecological challenges that may explain the difference in their pollutant levels. We measured polychlorinated biphenyls, organochlorine pesticides, polybrominated diphenyl ethers in fat, and perfluoroalkyl substances in plasma in pelagic and coastal adult female polar bears with similar body condition. We studied polar bear feeding habits with bulk stable isotope ratios of carbon and nitrogen. Nitrogen isotopes of amino acids were used to investigate their trophic position. We studied energy expenditure by estimating field metabolic rate using telemetry data. Annual home range size was determined, and spatial gradients in pollutants were explored using latitude and longitude centroid positions of polar bears. Pollutant levels were measured in harp seals from the Greenland Sea and White Sea–Barents Sea as a proxy for a West–East gradient of pollutants in polar bear prey. We showed that pelagic bears had higher pollutant loads than coastal bears because (1) they feed on a higher proportion of marine and higher trophic level prey, (2) they have higher energy requirements and higher prey consumption, (3) they forage in the marginal ice zones, and (4) they feed on prey located closer to pollutant emission sources/transport pathways.
2019
As part of the ongoing key comparison BIPM.QM-K1, a comparison has been performed between the ozone standard of Norway maintained by the Norwegian Institute for Air Research (NILU) and the common reference standard of the key comparison, maintained by the Bureau International des Poids et Mesures (BIPM). The instruments have been compared over a nominal ozone amount-of-substance fraction range from 0 nmol/mol to 500 nmol/mol.
2020
In the beginning of April 2020, large fires that started in the Chernobyl Exclusion Zone (CEZ) established after the Chernobyl accident in 1986 caused media and public concerns about the health impact from the resuspended radioactivity. In this paper, the emissions of previously deposited radionuclides from these fires are assessed and their dispersion and impact on the population is examined relying on the most recent data on radioactive contamination and emission factors combined with satellite observations. About 341 GBq of 137Cs, 51 GBq of 90Sr, 2 GBq of 238Pu, 33 MBq of 239Pu, 66 MBq of 240Pu and 504 MBq of 241Am were released in 1st–22nd April 2020 or about 1,000,000,000 times lower than the original accident in 1986 and mostly distributed in Central and East Europe. The large size of biomass burning particles carrying radionuclides prevents long-range transport as confirmed by concentrations reported in Europe. The highest cumulative effective doses (> 15 μSv) were calculated for firefighters and the population living in the CEZ, while doses were much lower in Kiev (2–5 μSv) and negligible in Belarus, Russia and Europe. All doses are radiologically insignificant and no health impact o
2020
Atmospheric measurements show an increase in CH4 from the 1980s to 1998 followed by a period of near‐zero growth until 2007. However, from 2007, CH4 has increased again. Understanding the variability in CH4 is critical for climate prediction and climate change mitigation. We examine the role of CH4 sources and the dominant CH4 sink, oxidation by the hydroxyl radical (OH), in atmospheric CH4 variability over the past three decades using observations of CH4, C2H6, and δ13CCH4 in an inversion. From 2006 to 2014, microbial and fossil fuel emissions increased by 36 ± 12 and 15 ± 8 Tg y−1, respectively. Emission increases were partially offset by a decrease in biomass burning of 3 ± 2 Tg y−1 and increase in soil oxidation of 5 ± 6 Tg y−1. A change in the atmospheric sink did not appear to be a significant factor in the recent growth of CH4.
2018
Radiocarbon (14C) analysis of carbonaceous aerosols is used for source apportionment, separating the carbon content into fossil vs. non-fossil origin, and is particularly useful when applied to subfractions of total carbon (TC), i.e. elemental carbon (EC), organic carbon (OC), water-soluble OC (WSOC), and water-insoluble OC (WINSOC). However, this requires an unbiased physical separation of these fractions, which is difficult to achieve. Separation of EC from OC using thermal–optical analysis (TOA) can cause EC loss during the OC removal step and form artificial EC from pyrolysis of OC (i.e. so-called charring), both distorting the 14C analysis of EC. Previous work has shown that water extraction reduces charring. Here, we apply a new combination of a WSOC extraction and 14C analysis method with an optimised separation that is coupled with a novel approach of thermal-desorption modelling for compensation of EC losses. As water-soluble components promote the formation of pyrolytic carbon, water extraction was used to minimise the charring artefact of EC and the eluate subjected to chemical wet oxidation to CO2 before direct 14C analysis in a gas-accepting accelerator mass spectrometer (AMS). This approach was applied to 13 aerosol filter samples collected at the Arctic Zeppelin Observatory (Svalbard) in 2017 and 2018, covering all seasons, which bear challenges for a simplified 14C source apportionment due to their low loading and the large portion of pyrolysable species. Our approach provided a mean EC yield of 0.87±0.07 and reduced the charring to 6.5 % of the recovered EC amounts. The mean fraction modern (F14C) over all seasons was 0.85±0.17 for TC; 0.61±0.17 and 0.66±0.16 for EC before and after correction with the thermal-desorption model, respectively; and 0.81±0.20 for WSOC.
2023
Methane emissions from the Nord Stream subsea pipeline leaks
The amount of methane released to the atmosphere from the Nord Stream subsea pipeline leaks remains uncertain, as reflected in a wide range of estimates1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18. A lack of information regarding the temporal variation in atmospheric emissions has made it challenging to reconcile pipeline volumetric (bottom-up) estimates1,2,3,4,5,6,7,8 with measurement-based (top-down) estimates8,9,10,11,12,13,14,15,16,17,18. Here we simulate pipeline rupture emission rates and integrate these with methane dissolution and sea-surface outgassing estimates9,10 to model the evolution of atmospheric emissions from the leaks. We verify our modelled atmospheric emissions by comparing them with top-down point-in-time emission-rate estimates and cumulative emission estimates derived from airborne11, satellite8,12,13,14 and tall tower data. We obtain consistency between our modelled atmospheric emissions and top-down estimates and find that 465 ± 20 thousand metric tons of methane were emitted to the atmosphere. Although, to our knowledge, this represents the largest recorded amount of methane released from a single transient event, it is equivalent to 0.1% of anthropogenic methane emissions for 2022. The impact of the leaks on the global atmospheric methane budget brings into focus the numerous other anthropogenic methane sources that require mitigation globally. Our analysis demonstrates that diverse, complementary measurement approaches are needed to quantify methane emissions in support of the Global Methane Pledge19.
2025