Skip to content
Scientific journal publication

MusicReco: Interactive Interface Modelling with User-Centered Design in a Music Recommendation System

Frantzvaag, Mats Ottem; Chatterjee, Ayan; Ghose, Debasish; Dash, Soumya P.

Publication details

Journal: IEEE Access, vol. 13, 30058–30087, 2025

Doi: doi.org/10.1109/ACCESS.2025.3540201

Summary:
Recommendation technologies are widespread in streaming services, e-commerce, social media, news, and content management. Besides recommendation generation, its presentation is also important. Most research and development focus on the technical aspects of recommendation generation; therefore, a gap exists between recommendation generation and its effective presentation and user interaction. This study focuses on how personalized recommendations can be presented and interacted with in a music recommendation system using interactive visual interfaces. Interactive interface modeling with User-Centered Design (UCD) in a recommendation system is essential for creating a user-friendly, engaging, and personalized experience. By involving users in the recommendation process and considering their feedback, the system can deliver more relevant content, foster user trust, and improve overall user satisfaction and engagement. In this study, the visual interface design and development of a personalized music recommendation prototype (MusicReco) are presented using an iterative UCD approach, involving twenty end-users, one researcher, three academic professionals, and four experts. As the study is more inclined toward the recommendation presentation and visual modeling, we used a standard content-based filtering algorithm on the publicly available Spotify dataset for music recommendation generation. End-users helped to mature the MusicReco prototype to a basic working version through continuous feedback and design inputs on their needs, context, preferences, personalization, and effective visualization. Moreover, MusicReco captures the idea of mood-based tailored recommendations to encourage end-users. Overall, this study demonstrates how UCD can enhance the presentation and interaction of mood-based music recommendations, effectively engaging users with advancements in recommendation algorithms as a future focus.