Found 9983 publications. Showing page 120 of 400:
The Arctic is warming two to three times faster than the global average, and the role of aerosols is not well constrained. Aerosol number concentrations can be very low in remote environments, rendering local cloud radiative properties highly sensitive to available aerosol. The composition and sources of the climate-relevant aerosols, affecting Arctic cloud formation and altering their microphysics, remain largely elusive due to a lack of harmonized concurrent multi-component, multi-site, and multi-season observations. Here, we present a dataset on the overall chemical composition and seasonal variability of the Arctic total particulate matter (with a size cut at 10 μm, PM10, or without any size cut) at eight observatories representing all Arctic sectors. Our holistic observational approach includes the Russian Arctic, a significant emission source area with less dedicated aerosol monitoring, and extends beyond the more traditionally studied summer period and black carbon/sulfate or fine-mode pollutants. The major airborne Arctic PM components in terms of dry mass are sea salt, secondary (non-sea-salt, nss) sulfate, and organic aerosol (OA), with minor contributions from elemental carbon (EC) and ammonium. We observe substantial spatiotemporal variability in component ratios, such as EC/OA, ammonium/nss-sulfate and OA/nss-sulfate, and fractional contributions to PM. When combined with component-specific back-trajectory analysis to identify marine or terrestrial origins, as well as the companion study by Moschos et al 2022 Nat. Geosci. focusing on OA, the composition analysis provides policy-guiding observational insights into sector-based differences in natural and anthropogenic Arctic aerosol sources. In this regard, we first reveal major source regions of inner-Arctic sea salt, biogenic sulfate, and natural organics, and highlight an underappreciated wintertime source of primary carbonaceous aerosols (EC and OA) in West Siberia, potentially associated with the oil and gas sector. The presented dataset can assist in reducing uncertainties in modelling pan-Arctic aerosol-climate interactions, as the major contributors to yearly aerosol mass can be constrained. These models can then be used to predict the future evolution of individual inner-Arctic atmospheric PM components in light of current and emerging pollution mitigation measures and improved region-specific emission inventories.
2022
2022
A combination of local (i.e. firefighting training facilities) and remote sources (i.e., long-range transport) are assumed to be responsible for the occurrence of per- and polyfluoroalkyl substances (PFASs) in Svalbard (Norwegian Arctic). However, no systematic elucidation of local PFASs sources have been conducted yet. Therefore, a survey was performed aiming at identifying local PFASs pollution sources on the island of Spitsbergen (Svalbard, Norway). Soil, fresh water (lake, draining rivers), sea water, melt-water run-off, surface snow and coastal sediment samples were collected from Longyearbyen (Norwegian mining town), Ny-Ålesund (research facility) and the Lake Linnévatnet area (background site) during several campaigns (2014-2016) and analysed for 14 individual target PFASs. For background site (Linnévatnet area, sampling during April to June 2015), ∑PFAS levels ranged from 0.4 – 4 ng/L in surface lake water (n = 20). PFAS in melt water from the contributing glaciers showed similar concentrations (~4 ng/L, n = 2). The short chain perfluorobutanoate (PFBA) was predominant in lake water (60-80% of the ∑PFASs), meltwater (20-30 %) and run-off water (40 %). Long range transport is assumed to be the major PFAS source. In Longyearbyen, 5 water samples (i.e. 2 seawater, 3 run-off) were collected near the local firefighting training site (FFTS) in November 2014 and June 2015, respectively. The highest PFAS levels were found in FFTS melt water run-off (118 ng/L). PFOS was the most abundant compound in the FFTS meltwater run-off (53 – 58 % PFASs). At the research station Ny-Ålesund, sea water (n = 6), soil (n = 9) and fresh water (n = 10) were collected in June 2016. Low ∑PFAS concentrations were determined for sea water (5 - 6 ng/L), whereas high ∑PFAS concentrations were found in run-off water (113 – 119 ng/L) and soil (211 – 800 ng/g dry weight (dw)) collected close to the local FFTS. In addition, high ∑PFAS levels (127 ng/L) were also found in fresh water from lake Solvatnet close to former sewage treatment facility. Overall, at both FFTS affected sites (soil, water), PFOS was the most abundant compound (60 – 69% of ∑PFASs). FFTS and landfill locations were identified as major PFASs sources for Svalbard settlements.
2018
2024
Embedding Ethical Impact Assessment in Nanosafety Decision Support
Nanotechnology is a key enabling technology, which is developing fast and influences many aspects of life. Nanomaterials are already included in a broad range of products and industrial sectors. Nanosafety issues are still a matter of concern for policy makers and stakeholders, but currently, there is no platform where all stakeholders can meet and discuss these issues. A comprehensive overview of all the issues in one single dashboard presenting the output of a decision support system is also lacking. This article outlines a strategy for developing one innovative part of a modular decision support system, designed to support the work of a new Risk Governance Council (RGC) for nanomaterials which will be established through the combined efforts of the GOV4NANO, NANORIGO, and RiskGONE H2020 projects. This new module will consist of guidelines for Ethical Impact Assessment (EIA) for nanomaterials and nanoenabled products. This article offers recommendations for adapting the European Committee for Standardization (CEN) prestandard on Ethical Impact Assessment CWA (CEN Workshop Agreement) 17145‐2:2017 (E), to fit into the more‐encompassing decision support system for risk governance of nanomaterials within the RiskGONE project.
2020
EMEP assessment report, outlook towards 2010 & EMEP monitoring strategy. Powerpoint presentation. NILU F
2004
2015
2014
2001