Found 9990 publications. Showing page 18 of 400:
The Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS) officially became the 33rd European Research Infrastructure Consortium (ERIC) on April 25, 2023 with the support of 17 founding member and observer countries. As a pan-European legal organization, ACTRIS ERIC will coordinate the provision of data and data products on short-lived atmospheric constituents and clouds relevant to climate and air pollution over the next 15-20 years. ACTRIS was designed more than a decade ago, and its development was funded at national and European levels. It was included in the European Strategy Forum on Research Infrastructures (ESFRI) Roadmap in 2016 and subsequently, in the national infrastructure roadmaps of European countries. It became a landmark of the ESFRI roadmap in 2021. The purpose of this paper is to describe the mission of ACTRIS, its added value to the community of atmospheric scientists, providing services to academia as well as the public and private sectors, and to summarize its main achievements. The present publication serves as a reference document for ACTRIS, its users and the scientific community as a whole. It provides the reader with relevant information and an overview on ACTRIS governance and services, as well as a summary of the main scientific achievements of the last 20 years. The paper concludes with an outlook on the upcoming challenges for ACTRIS and the strategy for its future evolution.
2024
2013
2007
2023
2013
2015
2012
Tire particles can enter the marine environment e.g. through direct discharge of road runoff, sewage systems or riverine inputs. Their fate in marine waters remains largely unknown, though the deep sea could be a final sink as for other marine litter. To simulate these conditions, we investigated in laboratory-controlled conditions the effects of high-hydrostatic pressure [20 MPa] vs atmospheric pressure [0.1 MPa] on the leaching of 17 organic compounds from cryo-milled tire tread particles (μm sized) and crumb rubber particles (mm sized) into natural seawater. We monitored the abundance of heterotrophic prokaryotes in the leachates over the 14 day exposure period under biotic conditions. Abiotic controls were employed to delineate the influence of prokaryotes on the fate of leached chemicals. Our results showed leaching of dissolved organic carbon and target chemicals under all experimental conditions, with higher concentrations of certain target chemicals under high-hydrostatic pressure conditions (e.g., 1,3-diphenylguanidine [DPG]: max. 703 (20 MPa) vs 119 μg/L (0.1 MPa) from cryo-milled tire tread particles under biotic conditions). Under abiotic conditions leaching was weaker for DPG and other chemicals, with contrasting trends for chemicals prone to biotransformation. In crumb rubber leachates chemical concentrations increased with time, but showed no significant differences between biotic/abiotic or high-hydrostatic/atmospheric pressure conditions. Prokaryotic abundance increased in all samples containing tire particles compared to seawater controls, indicating the use of the rubber and/or leached chemicals as an energy source.
2025
2009
2024
2024
2005
2007
2005
2004
Air implementation pilot- Lessons learnt from the implementation of air quality legislation at urban level. EEA report, 7/2013
2013