Found 10066 publications. Showing page 243 of 403:
2010
2014
2019
2019
Measurements from the Advanced Global Atmospheric Gases Experiment (AGAGE) combined with a global 12-box model of the atmosphere have long been used to estimate global emissions and surface mean mole fraction trends of atmospheric trace gases. Here, we present annually updated estimates of these global emissions and mole fraction trends for 42 compounds through 2023 measured by the AGAGE network, including chlorofluorocarbons, hydrochlorofluorocarbons, hydrofluorocarbons, perfluorocarbons, sulfur hexafluoride, nitrogen trifluoride, methane, nitrous oxide, and selected other compounds. The data sets are available at https://doi.org/10.5281/zenodo.15372480 (Western et al., 2025). We describe the methodology to derive global mole fraction and emissions trends, which includes the calculation of semihemispheric monthly mean mole fractions, the mechanics of the 12-box model and the inverse method that is used to estimate emissions from the observations and model. Finally, we present examples of the emissions and mole fraction data sets for the 42 compounds.
2025
2021
2010
2003
2014
Global and regional trends of atmospheric sulfur
The profound changes in global SO2 emissions over the last decades have affected atmospheric composition on a regional and global scale with large impact on air quality, atmospheric deposition and the radiative forcing of sulfate aerosols. Reproduction of historical atmospheric pollution levels based on global aerosol models and emission changes is crucial to prove that such models are able to predict future scenarios. Here, we analyze consistency of trends in observations of sulfur components in air and precipitation from major regional networks and estimates from six different global aerosol models from 1990 until 2015. There are large interregional differences in the sulfur trends consistently captured by the models and observations, especially for North America and Europe. Europe had the largest reductions in sulfur emissions in the first part of the period while the highest reduction came later in North America and East Asia. The uncertainties in both the emissions and the representativity of the observations are larger in Asia. However, emissions from East Asia clearly increased from 2000 to 2005 followed by a decrease, while in India a steady increase over the whole period has been observed and modelled. The agreement between a bottom-up approach, which uses emissions and process-based chemical transport models, with independent observations gives an improved confidence in the understanding of the atmospheric sulfur budget.
2019
2009