Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 9759 publications. Showing page 275 of 391:

Publication  
Year  
Category

Elemental and organic carbon in PM10: A one year measurement campaign within the European Monitoring and Evaluation Programme EMEP.

Yttri, K. E.; Aas, W.; Bjerke, A.; Cape, J. N.; Cavalli, F.; Ceburnis, D.; Dye, C.; Emblico, L.; Facchini, M. C.; Forster, C.; Hanssen, J. E.; Hansson, H. C.; Jennings, S. G.; Maenhaut, W.; Putaud, J. P.; Tørseth, K.

2007

Electrochemical reactivity and wetting properties of anodes made from anisotropic and isotropic cokes.

Sommerseth, C.; Thorne, R.J.; Ratvik, A.P.; Sandnes, E.; Rørvik, S.; Lossius, L.P.; Linga, H.; Svensson, A.M.

2016

Electrochemical Behaviour of Carbon Anodes Produced with Different Mixing Temperatures and Baking Levels—A Laboratory Study

Sommerseth, Camilla; Thorne, Rebecca Jayne; Gebarowski, Wojciech; Ratvik, Arne Petter; Rørvik, Stein; Linga, Hogne; Lossius, Lorentz Petter; Svensson, Ann Mari

2019

Electrocatalytic performance of oxygen-activated carbon fibre felt anodes mediating degradation mechanism of acetaminophen in aqueous environments

Jakobczyk, Pawel; Skowierzak, Grzegorz; Kaczmarzyk, Iwona; Nadolska, Malgorzata; Wcislo, Anna; Lota, Katarzyna; Bogdanowicz, Robert; Ossowski, Tadeusz; Rostkowski, Pawel; Lota, Gregorz; Ryl, Jacek

Carbon felts are flexible and scalable, have high specific areas, and are highly conductive materials that fit the requirements for both anodes and cathodes in advanced electrocatalytic processes. Advanced oxidative modification processes (thermal, chemical, and plasma-chemical) were applied to carbon felt anodes to enhance their efficiency towards electro-oxidation. The modification of the porous anodes results in increased kinetics of acetaminophen degradation in aqueous environments. The utilised oxidation techniques deliver single-step, straightforward, eco-friendly, and stable physiochemical reformation of carbon felt surfaces. The modifications caused minor changes in both the specific surface area and total pore volume corresponding with the surface morphology.

A pristine carbon felt electrode was capable of decomposing up to 70% of the acetaminophen in a 240 min electrolysis process, while the oxygen-plasma treated electrode achieved a removal yield of 99.9% estimated utilising HPLC-UV-Vis. Here, the electro-induced incineration kinetics of acetaminophen resulted in a rate constant of 1.54 h−1, with the second-best result of 0.59 h−1 after oxidation in 30% H2O2. The kinetics of acetaminophen removal was synergistically studied by spectroscopic and electrochemical techniques, revealing various reaction pathways attributed to the formation of intermediate compounds such as p-aminophenol and others.

The enhancement of the electrochemical oxidation rates towards acetaminophen was attributed to the appearance of surface carbonyl species. Our results indicate that the best-performing plasma-chemical treated CFE follows a heterogeneous mechanism with only approx. 40% removal due to direct electro-oxidation. The degradation mechanism of acetaminophen at the treated carbon felt anodes was proposed based on the detected intermediate products. Estimation of the cost-effectiveness of removal processes, in terms of energy consumption, was also elaborated. Although the study was focussed on acetaminophen, the achieved results could be adapted to also process emerging, hazardous pollutant groups such as anti-inflammatory pharmaceuticals.

Pergamon Press

2022

El escarabajo verde - Ciudades

Castell, Nuria; Tarrasón, Leonor (interview subjects)

2019

Eksperter: Dette bør du ikke gjenbruke

Herzke, Dorte (interview subject); Eilertsen, Stine (journalist)

2024

Ekspert: Slik blir vi skadet av UV-stråling når sola gløder

Svendby, Tove Marit (interview subject); Kristiansen, Martin Næss (journalist)

2024

EIF-air. Environmental Impact Factor for assessment of emissions to air. Summary report. NIVA report, 5098-2005

Larssen, T.; Knudsen, S.; Bruteig, I.; Aarrestad, P.A.; Engen, S.; Kinn, S.J.; Johnsen, S.

2005

EIF-Air. Emissions from four different sources in the North Sea and the Norwegian Sea. NILU OR

Knudsen, S.; Mc. Innes, H.; Løken, T.; Larssen, T.; Høgåsen, T.

2007

EIF-air. Drilling, production and transport Norne. NILU OR

Knudsen, S.; Mc Innes, H.; Larssen, T.; Høgåsen, T.

2006

EIF-Air Phase II. Report. NILU OR

Knudsen, S.; Solberg, S.; Larssen, T.; Bruteig, I.

2005

EFOKS: Effekter av forurensninger og klimastress på skog. NILU PP

Solberg, S.; Kvaalen, H.; Andreassen, K.; Clarke, N.; Tveito, O.E.; Tørseth, K.

2004

Effekter av ulike tiltak for å redusere NO2-nivået - modellresultater.

Høiskar, B.A.K.; Sundvor, I.; Sousa Santos, G.; Vogt, M.; Haug, T.; Strand, A.; Fridstrøm, L.; Aas, H.

2016

Effects of transport and processing on aerosol chemical and optical properties across the Gulf of Maine.

Quinn, P.; Bates, T.; Baynard, T.; Onasch, T.; Coffman, D.; Covert, D.; Worsnop, D.; Goldan, P.; Kuster, B.; de Gouw, J.; Stohl, A.

2005

Effects of titanium dioxide nanoparticles on the Hprt gene mutations in V79 hamster cells

Kazimirova, Alena; El Yamani, Naouale; Rubio, Laura; Garcia-Rodriguez, Alba; Barancokova, Magdalena; Marcos, Ricard; Dusinska, Maria

MDPI

2020

Publication
Year
Category