Found 9758 publications. Showing page 296 of 391:
2007
2006
2006
2007
Query-driven Qualitative Constraint Acquisition
Many planning, scheduling or multi-dimensional packing problems involve the design of subtle logical combinations of temporal or spatial constraints. Recently, we introduced GEQCA-I, which stands for Generic Qualitative Constraint Acquisition, as a new active constraint acquisition method for learning qualitative constraints using qualitative queries. In this paper, we revise and extend GEQCA-I to GEQCA-II with a new type of query, universal query, for qualitative constraint acquisition, with a deeper query-driven acquisition algorithm. Our extended experimental evaluation shows the efficiency and usefulness of the concept of universal query in learning randomly-generated qualitative networks, including both temporal networks based on Allen’s algebra and spatial networks based on region connection calculus. We also show the effectiveness of GEQCA-II in learning the qualitative part of real scheduling problems.
2024
QUILT - Quantification and Interpretation of Long-Term UV-Visible observations of the stratosphere. NILU F
2002
2002
2004
2017
South Africa is the largest national source of industrial atmospheric pollutants in Africa, and the emission of acid-forming pollutants occurs mainly in the eastern Highveld region of the country. However, spatial information on deposition is very sparse beyond the primary emissions zone. Here we quantify wet and dry deposition at four sites from the far northern savanna (Vaalwater) through the grasslands of the interior coal-producing belt of Mpumalanga (Elandsfontein) and the remote KwaZulu Natal Drakensberg mountains (Cathedral Peak) to the fynbos of the southern coast of the country (Knysna), a distance of over 1200 km. Rainwater samples were collected using automated wet-only samplers and analysed for mineral ions and water-soluble organic acids. Wet deposition fluxes were driven largely by rainfall amount rather than differences in chemical composition for three inland sites, with the highest wet deposited sulphur (S) (5.1 kgS/ha/year) and nitrogen (N) (6.9 kgN/ha/year) found in the Drakensberg mountains, greatly expanding the potentially harmful deposition footprint beyond the industrialised Highveld zone. Furthermore, the study period covered the extreme drought years of 2015–2016; hence, wet deposition fluxes could be significantly underestimated relative to more average rainfall years. Dry deposition fluxes, estimated using passive samplers and inferential methods, were far higher at the industrial Highveld site. Overall, total (wet + dry) deposition of S was greatest at the Highveld site (12.0 kgS/ha/year), but the greatest total N deposition (7.0 kgN/ha/year) was found at the remote Drakensberg site. Measured levels of both S and N deposition are well within the ranges found to cause acidification of soils and surface waters in northern hemisphere studies, or changes in vegetation species composition, and could be much higher in more typical, wetter years.
2022
2005
Rambekk renseanlegg, Gjøvik. Dispersion calculations of odorous emissions from fermentation process. NILU OR
2003
2015
2004
2005
Academic Press
2023
Rapid identification of in vitro cell toxicity using an electrochemical membrane screening platform
This study compares the performance and output of an electrochemical phospholipid membrane platform against respective in vitro cell-based toxicity testing methods using three toxicants of different biological action (chlorpromazine (CPZ), colchicine (COL) and methyl methanesulphonate (MMS)). Human cell lines from seven different tissues (lung, liver, kidney, placenta, intestine, immune system) were used to validate this physicochemical testing system. For the cell-based systems, the effective concentration at 50 % cell death (EC50) values are calculated. For the membrane sensor, a limit of detection (LoD) value was extracted as a quantitative parameter describing the minimum concentration of toxicant which significantly affects the structure of the phospholipid sensor membrane layer. LoD values were found to align well with the EC50 values when acute cell viability was used as an end-point and showed a similar toxicity ranking of the tested toxicants. Using the colony forming efficiency (CFE) or DNA damage as end-point, a different order of toxicity ranking was observed. The results of this study showed that the electrochemical membrane sensor generates a parameter relating to biomembrane damage, which is the predominant factor in decreasing cell viability when in vitro models are acutely exposed to toxicants. These results lead the way to using electrochemical membrane-based sensors for rapid relevant preliminary toxicity screens.
Elsevier
2023
2012
1999
2002