Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 9759 publications. Showing page 302 of 391:

Publication  
Year  
Category

Current status of the ability of the GEMS/MACC models to reproduce the tropospheric CO vertical distribution as measured by MOZAIC.

Elguindi, N.; Clark, H.; Ordóñez, C.; Thouret, V.; Flemming, J.; Stein, O.; Huijnen, V.; Moinat, P.; Inness, A.; Peuch, V.-H.; Stohl, A.; Turquety, S.; Athier, G.; Cammas, J.-P.; Schultz, M.

2010

Current status of global emission inventories for Hg and PCBs. NILU F

Breivik, K.; Pacyna, J.; Pacyna, E.

2001

Current status of applicability of low-cost particulate matter sensors for ambient air pollution and exposure assessment.

Jovaševic-Stojanovic, M.; Topalovic, D. B.; Davidovic, M.; Bartonova, A.; Ristovski, Z. D.

2017

Current status of applicability of low-cost particulate matter sensors for ambient air pollution and exposure assessment

Jovasevic-Stojanovic, Milena; Davidovic, M.; Tasic, V.; Bartonova, Alena; Ristovski, Z. D.

2019

Current status and future challenges of genotoxicity OECD Test Guidelines for nanomaterials: a workshop report

Doak, Shareen H.; Andreoli, Cristina; Burgum, Michael J.; Chaudhry, Qasim; Bleeker, Eric; Bossa, Cecilia; Domenech, Josefa; Drobne, Damjana; Fessard, Valérie; Jeliazkova, Nina; Longhin, Eleonora Marta; Rundén-Pran, Elise; Stepnik, Maciej; El Yamani, Naouale; Catalán, Julia; Dusinska, Maria

Genotoxicity testing for nanomaterials remains challenging as standard testing approaches require some adaptation, and further development of nano-specific OECD Test Guidelines (TGs) and Guidance Documents (GDs) are needed. However, the field of genotoxicology continues to progress and new approach methodologies (NAMs) are being developed that could provide relevant information on the range of mechanisms of genotoxic action that may be imparted by nanomaterials. There is a recognition of the need for implementation of new and/or adapted OECD TGs, new OECD GDs, and utilization of NAMs within a genotoxicity testing framework for nanomaterials. As such, the requirements to apply new experimental approaches and data for genotoxicity assessment of nanomaterials in a regulatory context is neither clear, nor used in practice. Thus, an international workshop with representatives from regulatory agencies, industry, government, and academic scientists was convened to discuss these issues. The expert discussion highlighted the current deficiencies that exist in standard testing approaches within exposure regimes, insufficient physicochemical characterization, lack of demonstration of cell or tissue uptake and internalization, and limitations in the coverage of genotoxic modes of action. Regarding the latter aspect, a consensus was reached on the importance of using NAMs to support the genotoxicity assessment of nanomaterials. Also highlighted was the need for close engagement between scientists and regulators to (i) provide clarity on the regulatory needs, (ii) improve the acceptance and use of NAM-generated data, and (iii) define how NAMs may be used as part of weight of evidence approaches for use in regulatory risk assessments.

Oxford University Press

2023

Current model capabilities for simulating black carbon and sulfate concentrations in the Arctic atmosphere: a multi-model evaluation using a comprehensive measurement data set.

Eckhardt, S.; Quennehen, B.; Olivié, D. J. L.; Berntsen, T. K.; Cherian, R.; Christensen, J. H.; Collins, W.; Crepinsek, S.; Daskalakis, N.; Flanner, M.; Herber, A.; Heyes, C.; Hodnebrog, Ø.; Huang, L.; Kanakidou, M.; Klimont, Z.; Langner, J.; Law, K. S.; Lund, M. T.; Mahmood, R.; Massling, A.; Myriokefalitakis, S.; Nielsen, I. E.; Nøjgaard, J. K.; Quaas, J.; Quinn, P. K.; Raut, J.-C.; Rumbold, S. T.; Schulz, M.; Sharma, S.; Skeie, R. B.; Skov, H.; Uttal, T.; von Salzen, K.; Stohl, A.

2015

Current levels and trends of brominated flame retardants in the environment. The Handbook of Environmental Chemistry, vol. 16

Law, R.J.; Herzke, D.

2011

Current and future levels of mercury atmospheric pollution on a global scale.

Pacyna, J.M.; Travnikov, O.; De Simone, F.; Hedgecock, I.M.; Sundseth, K.; Pacyna, E.G.; Steenhuisen, F.; Pirrone, N.; Munthe, J.; Kindbom, K.

2016

Current and future emissions of selected heavy metals to the atmosphere from anthropogenic sources in Europe.

Pacyna, E.G.; Pacyna, J.M.; Fudala, J.; Strzelecka-Jastrzab, E.; Hlawiczka, S.; Panasiuk, D.; Nitter, S.; Pregger, T.; Pfeiffer, H.; Friedrich, R.

2007

Curating scientific information in knowledge infrastructures

Stocker, Markus; Paasonen, Pauli; Fiebig, Markus; Zaidan, Martha A; Hardisty, Alex

Interpreting observational data is a fundamental task in the sciences, specifically in earth and environmental science where observational data are increasingly acquired, curated, and published systematically by environmental research infrastructures. Typically subject to substantial processing, observational data are used by research communities, their research groups and individual scientists, who interpret such primary data for their meaning in the context of research investigations. The result of interpretation is information—meaningful secondary or derived data—about the observed environment. Research infrastructures and research communities are thus essential to evolving uninterpreted observational data to information. In digital form, the classical bearer of information are the commonly known “(elaborated) data products,” for instance maps. In such form, meaning is generally implicit e.g., in map colour coding, and thus largely inaccessible to machines. The systematic acquisition, curation, possible publishing and further processing of information gained in observational data interpretation—as machine readable data and their machine readable meaning—is not common practice among environmental research infrastructures. For a use case in aerosol science, we elucidate these problems and present a Jupyter based prototype infrastructure that exploits a machine learning approach to interpretation and could support a research community in interpreting observational data and, more importantly, in curating and further using resulting information about a studied natural phenomenon.

Ubiquity Press

2018

CTT 2.0 Carbon Track and Trace, NILUs know-how and experience from previous research activities. NILU report

Sundseth, K.; Castell, N.; Marsteen, L.; Dauge, F.R.; Ødegård, R.; Driscoll, P.; Anthonisen, F.; Vesterkjær, A.

2016

CSF to blood clearance differs substantially across individuals and patients with CSF disorders.

Hovd, Markus Herberg; Mariussen, Espen; Uggerud, Hilde Thelle; Lashkarivand, Aslan; Christensen, Hege; Ringstad, Geir; Eide, Per Kristian

BioMed Central (BMC)

2023

CSF sodium at toxic levels precedes delirium in hip fracture patients

Hassel, Bjørnar; Mariussen, Espen; Idland, Ane-Victoria; Dahl, Gry Torsæter; Ræder, Johan; Frihagen, Frede Jon; Berg, Jens Petter; Chaudhry, Farrukh Abbas; Wyller, Torgeir Bruun; Watne, Leiv

Elsevier

2018

Crumb rubber toxicity in coastal marine systems

Halsband-Lenk, Claudia; Herzke, Dorte; Sørensen, Lisbet; Booth, Andy

Crumb rubber granulate (CRG) produced from end of life tires (ELTs) is commonly applied on indoor and outdoor synthetic turf pitches (STPs), playgrounds, safety surfaces and walkways. In addition to fillers, stabilizers, cross-linking agents and secondary components (e.g. pigments, oils, resins, fibers), ELTs contain high levels of organic additive compounds and heavy metals. While previous environmental studies have focused on terrestrial soil and freshwater ecosystems, in Norway many sites applying CRG are coastal. In the current study, the organic chemical and metal content of 'fresh' and 'weathered' CRG and their seawater leachates was investigated, and the uptake of crumb rubber by the brown crab (Cancer pagurus) was studied as an example of an exposure route for CRG to coastal marine organisms. A combination of pyrolysis gas chromatography mass spectrometry (py-GC-MS) and chemical extraction followed by GC-MS analysis revealed similar organic chemical profiles for pristine and weathered CRG, including additives such as benzothiazole, N-1,3-dimethylbutyl-N'-phenyl-p-phenylenediamine and a range of polycyclic aromatic hydrocarbons (PAHs) and phenolic compounds (e.g. bisphenols). ICP-MS analysis indicated g/kg quantities of Zn and mg/kg quantities of Fe, Mn, Cu, Co, Cr, Pb and Ni in the CRG. A mixture of organic additives, metals and other inorganic compounds readily leached from the CRG into seawater. Benzothiazole was the organic compound with highest concentration (average of 136 mg/L), while PAHs (ranging from <LOD to 0.58 mg/L) and phenolic compounds (e.g. 2,4-bisphenol F and 4,4’-bisphenol F at 0.012 and 0.006 mg/L, respectively) were present in low abundance. Zn was the most abundant metal in the leachates (23.8 mg/L) followed by Fe (0.08 mg/L) and Co (0.06 mg/L). While organic chemical concentrations in the leachates stabilized within days, metals continued to leach out over the 30 day period. Brown crabs were exposed to two concentrations of CRG (0.5 and 0.05 g/L) in two size fractions (5 mm and 250 µm diameter) for 24 hours. Ingestion of the rubber and subsequent gut evacuation were studied over 5 days. Image analysis of filtered stomach contents confirmed uptake of rubber particles in different sizes, but also efficient gut evacuation upon transfer to clean water. We discuss the implications of CRG and leachate toxicity in acute and long-term exposure scenarios for marine coastal ecosystems.

2020

Crumb rubber in sports fields - Advances in environmental chemistry

Herzke, Dorte; Halsband-Lenk, Claudia; Sørensen, Lisbet; Booth, Andy

2018

Cruisetrafikken er et problem – men handler det om luft?

Høiskar, Britt Ann Kåstad; Tønnesen, Dag

2019

Publication
Year
Category