Found 9884 publications. Showing page 321 of 396:
2020
As part of the ongoing key comparison BIPM.QM-K1, a comparison has been performed between the ozone standard of Norway maintained by the Norwegian Institute for Air Research (NILU) and the common reference standard of the key comparison, maintained by the Bureau International des Poids et Mesures (BIPM). The instruments have been compared over a nominal ozone amount-of-substance fraction range from 0 nmol/mol to 500 nmol/mol.
2020
Grouping strategies are needed for per- and polyfluoroalkyl substances (PFAS), in part, because it would be time and resource intensive to test and evaluate the more than 4700 PFAS on the global market on a chemical-by-chemical basis. In this paper we review various grouping strategies that could be used to inform actions on these chemicals and outline the motivations, advantages and disadvantages for each. Grouping strategies are subdivided into (1) those based on the intrinsic properties of the PFAS (e.g. persistence, bioaccumulation potential, toxicity, mobility, molecular size) and (2) those that inform risk assessment through estimation of cumulative exposure and/or effects. The most precautionary grouping approach of those reviewed within this article suggests phasing out PFAS based on their high persistence alone (the so-called “P-sufficient” approach). The least precautionary grouping approach reviewed advocates only grouping PFAS for risk assessment that have the same toxicological effects, modes and mechanisms of action, and elimination kinetics, which would need to be well documented across different PFAS. It is recognised that, given jurisdictional differences in chemical assessment philosophies and methodologies, no one strategy will be generally acceptable. The guiding question we apply to the reviewed grouping strategies is: grouping for what purpose? The motivation behind the grouping (e.g. determining use in products vs. setting guideline levels for contaminated environments) may lead to different grouping decisions. This assessment provides the necessary context for grouping strategies such that they can be adopted as they are, or built on further, to protect human and environmental health from potential PFAS-related effects.
Royal Society of Chemistry (RSC)
2020
Active sampling methodology for atmospheric monitoring of cyclic volatile methylsiloxanes (cVMS) was improved to reduce sampling artifacts. A new sorbent, ABN Express (ABN), was evaluated for storage stability and measurement accuracy. Storage stability of cVMS on ABN showed less than 1% degradation of the individual 13C-labelled octamethylcyclotetrasiloxane (13C4-D4), decamethylcyclopentasiloxane (13C5-D5) and dodecamethylcyclohexasiloxane (13C6-D6) after 14 days storage at room temperature and at −20 °C whereas significant degradation was observed on ENV+ sorbent at room temperature (37–62 %) and −20 °C (9–16 %). 13C4-D4 formed on ENV+ spiked with 13C5-D5, and both 13C4-D4 and 13C5-D5 formed on ENV+ spiked with 13C6-D6. However, this was not observed on the ABN sorbent. Performance of ABN was compared to ENV+ through an 8-month Arctic sampling campaign at the Zeppelin Observatory (Ny Ålesund, Svalbard). Good agreement between ABN and ENV+ was observed for D4 in the spring/summer months. However, D5 and D6 was found to be consistently higher on the ABN sorbent during this time period with D6 showing the greatest deviation. During the winter months, larger deviations were observed between ABN and ENV+ sorbents with a factor of 4 times higher atmospheric concentrations of both D5 and D6 found on ABN; indicating sorbent related degradation on ENV+. Our findings show that the ABN sorbent provides greater stability and accuracy for atmospheric monitoring of cVMS. Implications of these improvements towards atmospheric fate processes will be discussed.
Elsevier
2020
The main goal for the “Towards better exploitation of Satellite data for monitoring Air Quality in Norway using
downscaling techniques” (Sat4AQN) project was to evaluate the potential of spatially downscaling satellite data using a
high-resolution Chemical Transport Model (CTM) to spatial scales that are more relevant for monitoring air quality in
urban areas and regional background sites in Norway. For this demonstration project, we focused on satellite aerosol
optical density (AOD) and particulate matter (PM) estimates.
NILU
2020
Monitoring of the atmospheric ozone layer and natural ultraviolet radiation. Annual Report 2019.
This report summarizes the results from the Norwegian monitoring programme on stratospheric ozone and UV radiation
measurements. The ozone layer has been measured at three locations since 1979: In Oslo/Kjeller, Tromsø/Andøya and
Ny-Ålesund. The UV measurements started in 1995. The results show that there was a significant decrease in stratospheric
ozone above Norway between 1979 and 1997. After that, the ozone layer stabilized at a level ~2% below pre-1980 level.
2019 was characterized by low ozone values in April and an “ozone hole” in Southern Norway in December 2019.
NILU
2020
Global occurrence, chemical properties, and ecological impacts of e-wastes (IUPAC Technical Report)
The waste stream of obsolete electronic equipment grows exponentially, creating a worldwide pollution and resource problem. Electrical and electronic waste (e-waste) comprises a heterogeneous mix of glass, plastics (including flame retardants and other additives), metals (including rare Earth elements), and metalloids. The e-waste issue is complex and multi-faceted. In examining the different aspects of e-waste, informal recycling in developing countries has been identified as a primary concern, due to widespread illegal shipments; weak environmental, as well as health and safety, regulations; lack of technology; and inadequate waste treatment structure. For example, Nigeria, Ghana, India, Pakistan, and China have all been identified as hotspots for the disposal of e-waste. This article presents a critical examination on the chemical nature of e-waste and the resulting environmental impacts on, for example, microbial biodiversity, flora, and fauna in e-waste recycling sites around the world. It highlights the different types of risk assessment approaches required when evaluating the ecological impact of e-waste. Additionally, it presents examples of chemistry playing a role in potential solutions. The information presented here will be informative to relevant stakeholders seeking to devise integrated management strategies to tackle this global environmental concern.
2020
The Arctic is one of the most rapidly warming regions of the Earth, with predicted temperature increases of 5–7 ∘C and the accompanying extensive retreat of Arctic glacial systems by 2100. Retreating glaciers will reveal new land surfaces for microbial colonisation, ultimately succeeding to tundra over decades to centuries. An unexplored dimension to these changes is the impact upon the emission and consumption of halogenated organic compounds (halocarbons). Halocarbons are involved in several important atmospheric processes, including ozone destruction, and despite considerable research, uncertainties remain in the natural cycles of some of these compounds. Using flux chambers, we measured halocarbon fluxes across the glacier forefield (the area between the present-day position of a glacier's ice-front and that at the last glacial maximum) of a high-Arctic glacier in Svalbard, spanning recently exposed sediments (<10 years) to approximately 1950-year-old tundra. Forefield land surfaces were found to consume methyl chloride (CH3Cl) and methyl bromide (CH3Br), with both consumption and emission of methyl iodide (CH3I) observed. Bromoform (CHBr3) and dibromomethane (CH2Br2) have rarely been measured from terrestrial sources but were here found to be emitted across the forefield. Novel measurements conducted on terrestrial cyanobacterial mats covering relatively young surfaces showed similar measured fluxes to the oldest, vegetated tundra sites for CH3Cl, CH3Br, and CH3I (which were consumed) and for CHCl3 and CHBr3 (which were emitted). Consumption rates of CH3Cl and CH3Br and emission rates of CHCl3 from tundra and cyanobacterial mat sites were within the ranges reported from older and more established Arctic tundra elsewhere. Rough calculations showed total emissions and consumptions of these gases across the Arctic were small relative to other sources and sinks due to the small surface area represented by glacier forefields. We have demonstrated that glacier forefields can consume and emit halocarbons despite their young age and low soil development, particularly when cyanobacterial mats are present.
2020
An assessment of the contribution of air pollution to the weathering of limestone heritage in Malta
Malta is known for its limestone megalithic temples of which many are inscribed on the UNESCO World Heritage List. A variation of this limestone was historically, and until very few years ago, a primary building material in Malta. The temples are subject to various environmental influences which until recently have led to several collapses due in part to serious stone surface and infill loss. As a protection measure, open-sided shelters have been built over three of these temples. This work assesses the degrading influence of air pollution (nitrogen dioxide, ozone, particle matter, sulfur dioxide, and acidity in rain) on the temples, in combination and comparison with the influence of other environmental factors (relative humidity, temperature, precipitation, moisture, sea salt, wind) and in this respect evaluates the potential protective effect of the shelters. The variation in air pollution weathering of limestone exposed outdoor in Malta was calculated by exposure–response functions from the ICP-materials programme and compared with measured values, and its contribution to the deterioration of the temples was evaluated. The difference between urban and rural locations in Malta, in the first year of atmospheric chemical weathering of limestone due to air pollution, was found to be about one micrometer loss of stone surface. This is probably less than the annual variations due to the influence of natural climatic factors, and small compared to the present annual variations in continental Europe. The deposition of sea salt and presence of salts on and in the limestone megaliths and changes in salt-crystallization events due to relative humidity fluctuations, inside and outside the shelters, will account for more of the variations in the first year of weathering of Globigerina limestone than variations in air pollution. The deterioration will also be related to temperature (including condensation events), wind parameters and rainfall, as well as ground water replenished from areas beyond the shelter.
Springer
2020
2020
2020
2020
2020
2020
Air pollution is one of the world’s leading environmental causes of death. The epidemiological relationship between outdoor air pollution and the onset of health diseases associated with death is now well established. Relevant toxicological proofs are now dissecting the molecular processes that cause inflammation, reactive species generation, and DNA damage. In addition, new data are pointing out the role of airborne particulates in the modulation of genes and microRNAs potentially involved in the onset of human diseases. In the present review we collect the relevant findings on airborne particulates of one of the biggest hot spots of air pollution in Europe (i.e., the Po Valley), in the largest urban area of this region, Milan. The different aerodynamic fractions are discussed separately with a specific focus on fine and ultrafine particles that are now the main focus of several studies. Results are compared with more recent international findings. Possible future perspectives of research are proposed to create a new discussion among scientists working on the toxicological effects of airborne particles.
MDPI
2020
The Partnership for Chemicals Risk Assessment (PARC) is currently under development as a joint research and innovation programme to strengthen the scientific basis for chemical risk assessment in the EU. The plan is to bring chemical risk assessors and managers together with scientists to accelerate method development and the production of necessary data and knowledge, and to facilitate the transition to next-generation evidence-based risk assessment, a non-toxic environment and the European Green Deal. The NORMAN Network is an independent, well-established and competent network of more than 80 organisations in the field of emerging substances and has enormous potential to contribute to the implementation of the PARC partnership. NORMAN stands ready to provide expert advice to PARC, drawing on its long experience in the development, harmonisation and testing of advanced tools in relation to chemicals of emerging concern and in support of a European Early Warning System to unravel the risks of contaminants of emerging concern (CECs) and close the gap between research and innovation and regulatory processes. In this commentary we highlight the tools developed by NORMAN that we consider most relevant to supporting the PARC initiative: (i) joint data space and cutting-edge research tools for risk assessment of contaminants of emerging concern; (ii) collaborative European framework to improve data quality and comparability; (iii) advanced data analysis tools for a European early warning system and (iv) support to national and European chemical risk assessment thanks to harnessing, combining and sharing evidence and expertise on CECs. By combining the extensive knowledge and experience of the NORMAN network with the financial and policy-related strengths of the PARC initiative, a large step towards the goal of a non-toxic environment can be taken.
Springer
2020