Found 9887 publications. Showing page 338 of 396:
The role of nature-based solutions for improving environmental quality, health and well-being
Nature-based solutions (NbS) have been positioned and implemented in urban areas as solutions for enhancing urban resilience in the face of a wide range of urban challenges. However, there is a lack of recommendations of optimal NbS and appropriate typologies fitting to different contexts and urban design. The analytical frameworks for NbS implementation and impact evaluation, that integrate NbS into local policy frameworks, socio-economic transition pathways, and spatial planning, remain fragmented. In this article, the NbS concept and its related terminologies are first discussed. Second, the types of NbS implemented in Europe are reviewed and their benefits over time are explored, prior to categorizing them and highlighting the key methods, criteria, and indicators to identify and assess the NbS’s impacts, co-benefits, and trade-offs. The latter involved a review of the websites of 52 projects and some relevant publications funded by EU Research and Innovation programs and other relevant publications. The results show that there is a shared understanding that the NbS concept encompasses benefits of restoration and rehabilitation of ecosystems, carbon neutrality, improved environmental quality, health and well-being, and evidence for such benefits. This study also shows that most NbS-related projects and activities in Europe use hybrid approaches, with NbS typically developed, tested, or implemented to target specific types of environmental–social–economic challenges. The results of this study indicate that NbS as a holistic concept would be beneficial in the context of climate action and sustainable solutions to enhance ecosystem resilience and adaptive capacity within cities. As such, this article provides a snapshot of the role of NbS in urban sustainability development, a guide to the state-of-the-art, and key messages and recommendations of this rapidly emerging and evolving field.
MDPI
2021
The report provides interim 2020 maps for PM10 annual average, NO2 annual average and the ozone indicator SOMO35. The maps have been produced based on non-validated Up-To-Date data reported to the AQ e-reporting database (data flow E2a), the CAMS Ensemble Forecast modelling data and other supplementary data including air quality data reported to EMEP. In addition to concentration maps, the inter-annual differences between the years 2019 and 2020 are presented (using the 2019 regular and the 2020 interim maps), as well as European exposure estimates based on the interim maps. The contribution of lockdown measures connected with the Covid-19 pandemic on the change of air pollutant concentrations during the exceptional year 2020 is briefly discussed. The decrease in road transport, aviation and international shipping intensity during the lockdown resulted in a reduction of the NOx emission, mainly in large cities and urbanized areas. Compared to 2019, a general decrease in NO2 annual average concentrations is shown for 2020, as well as a decrease in values of the ozone indicator SOMO35, apart from areas with a steep NO2 decrease. Due to the chemical processes, the decrease in NOX resulted in an ozone increase in these areas. The contribution of lockdown measures on the change of PM10 concentrations is quite complex. On the one hand, there was a decrease in emissions of suspended particles and their precursors due to decrease in transport. On the other hand, higher intensity of residential heating likely led to higher emissions of both suspended particles and their precursors.
ETC/ATNI
2021
This report provides a summary of the quality analysis of the EU Member States’ submission under 18 (1) (b) of the Regulation on the Governance of the Energy Union and Climate Action (EU) 2018/1999 conducted in 2021. Under this obligation EU Member States have to submit updated GHG projections and related information biennially. The reported information undergoes several phases of QA/QC checks consisting of checks on timeliness, accuracy, completeness, consistency and comparability. Details on the underlying QA/QC procedure are described in ETC/CME Eionet Report 7/2021.
ETC/CME
2021
Growing Atmospheric Emissions of Sulfuryl Fluoride
The potent greenhouse gas sulfuryl fluoride (SO2F2) is increasingly used as a fumigant, replacing methyl bromide, whose structural and soil fumigation uses have been phased out under the Montreal Protocol. We use measurements on archived air samples and in situ observations from the Advanced Global Atmospheric Gases Experiment (AGAGE) and a box model of the global atmosphere to show a global increase of SO2F2 mole fraction from 0.3 ± 0.02 to 2.5 ± 0.08 ppt along with a global increase in emissions from 0.5 ± 0.4 Gg yr−1 to 2.9 ± 0.4 Gg yr−1 from 1978 to 2019. Based on a hybrid model incorporating bottom-up industry data and a top-down downscaling approach, we estimate the spatial distribution and trend in SO2F2 regional emissions between 2000 and 2019 and propose that the global emissions increase is driven by the growing use of SO2F2 in structural fumigation in North America and in postharvest treatment of grains and other agricultural products worldwide.
American Geophysical Union (AGU)
2021
Low concentrations of 106Ru were detected across Europe at the turn of September and October 2017. The origin of 106Ru has still not been confirmed; however, current studies agree that the release occurred probably near Mayak in the southern Urals. The source reconstructions are mostly based on an analysis of concentration measurements coupled with an atmospheric transport model. Since reasonable temporal resolution of concentration measurements is crucial for proper source term reconstruction, the standard 1-week sampling interval could be limiting. In this paper, we present an investigation of the usability of the newly developed AMARA (Autonomous Monitor of Atmospheric Radioactive Aerosol) and CEGAM (carousel gamma spectrometry) real-time monitoring systems, which are based on the gamma-ray counting of aerosol filters and allow for determining the moment when 106Ru arrived at the monitoring site within approx. 1 h and detecting activity concentrations as low as several mBq m−3 in 4 h intervals. These high-resolution data were used for inverse modeling of the 106Ru release. We perform backward runs of the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) atmospheric transport model driven with meteorological data from the Global Forecast System (GFS), and we construct a source–receptor sensitivity (SRS) matrix for each grid cell of our domain. Then, we use our least squares with adaptive prior covariance (LS-APC) method to estimate possible locations of the release and the source term of the release. With Czech monitoring data, the use of concentration measurements from the standard regime and from the real-time regime is compared, and a better source reconstruction for the real-time data is demonstrated in the sense of the location of the source and also the temporal resolution of the source. The estimated release location, Mayak, and the total estimated source term, 237±107 TBq, are in agreement with previous studies. Finally, the results based on the Czech monitoring data are validated with the IAEA-reported (International Atomic Energy Agency) dataset with a much better spatial resolution, and the agreement between the IAEA dataset and our reconstruction is demonstrated. In addition, we validated our findings also using the FLEXPART (FLEXible PARTicle dispersion) model coupled with meteorological analyses from the European Centre for Medium-Range Weather Forecasts (ECMWF).
2021
Elevated stratopause events in the current and a future climate: A chemistry-climate model study
The characteristics and driving mechanisms of Elevated Stratopause Events (ESEs) are examined in simulations of the ECHAM/MESSy Atmospheric Chemistry (EMAC) chemistry-climate model under present and projected climate conditions. ESEs develop after sudden stratospheric warmings (SSWs) in boreal winter. While the stratopause descends during SSWs, it is reformed at higher altitudes after the SSWs, leading to ESEs in years with a particularly high new stratopause. EMAC reproduces well the frequency and main characteristics of observed ESEs. ESEs occur in 24% of the winters, mostly after major SSWs. They develop in stable polar vortices due to a persistent tropospheric wave forcing leading to a prolonged zonal wind reversal in the lower stratosphere. By wave filtering, this enables a faster re-establishment of the mesospheric westerly jet, polar downwelling and a higher stratopause. We find the presence of a westward-propagating wavenumber-1 planetary wave in the mesosphere following the onset, consistent with in-situ generation by large-scale instability. By the end of the 21st century, the number of ESEs is projected to increase, mainly due to a sinking of the original stratopause after strong tropospheric wave forcing and planetary wave dissipation at lower levels. Future ESEs develop preferably in more intense and cold polar vortices, and tend to be shorter. While in the current climate, planetary wavenumber-2 contributes to the forcing of ESEs, future wave forcing is dominated by wavenumber-1 activity as a result of climate change. Hence, a persistent wave forcing seems to be more relevant for the development of an ESE than the wavenumber decomposition of the forcing.
Elsevier
2021
2021
Moving forward in microplastic research: A Norwegian perspective
Given the increasing attention on the occurrence of microplastics in the environment, and the potential envi-ronmental threats they pose, there is a need for researchers to move quickly from basic understanding to applied science that supports decision makers in finding feasible mitigation measures and solutions. At the same time, they must provide sufficient, accurate and clear information to the media, public and other relevant groups (e.g., NGOs). Key requirements include systematic and coordinated research efforts to enable evidence-based decision making and to develop efficient policy measures on all scales (national, regional and global). To achieve this, collaboration between key actors is essential and should include researchers from multiple disciplines, policy-makers, authorities, civil and industry organizations, and the public. This further requires clear and informative communication processes, and open and continuous dialogues between all actors. Cross-discipline dialogues between researchers should focus on scientific quality and harmonization, defining and accurately communi-cating the state of knowledge, and prioritization of topics that are critical for both research and policy, with the common goal to establish and update action plans for holistic benefit. In Norway, cross-sectoral collaboration has been fundamental in supporting the national strategy to address plastic pollution. Researchers, stakeholders and the environmental authorities have come together to exchange knowledge, identify knowledge gaps, and set targeted and feasible measures to tackle one of the most challenging aspects of plastic pollution: microplastic. In this article, we present a Norwegian perspective on the state of knowledge on microplastic research efforts. Norway’s involvement in international efforts to combat plastic pollution aims at serving as an example of how key actors can collaborate synergistically to share knowledge, address shortcomings, and outline ways forward to address environmental challenges.
Elsevier
2021
Heavy metals and POPs: Pollution assessment of toxic substances on regional and global scales
Meteorological Synthesizing Centre - East
2021
Tackling Data Quality When Using Low-Cost Air Quality Sensors in Citizen Science Projects
Using low-cost air quality sensors (LCS) in citizen science projects opens many possibilities. LCS can provide an opportunity for the citizens to collect and contribute with their own air quality data. However, low data quality is often an issue when using LCS and with it a risk of unrealistic expectations of a higher degree of empowerment than what is possible. If the data quality and intended use of the data is not harmonized, conclusions may be drawn on the wrong basis and data can be rendered unusable. Ensuring high data quality is demanding in terms of labor and resources. The expertise, sensor performance assessment, post-processing, as well as the general workload required will depend strongly on the purpose and intended use of the air quality data. It is therefore a balancing act to ensure that the data quality is high enough for the specific purpose, while minimizing the validation effort. The aim of this perspective paper is to increase awareness of data quality issues and provide strategies to minimizing labor intensity and expenses while maintaining adequate QA/QC for robust applications of LCS in citizen science projects. We believe that air quality measurements performed by citizens can be better utilized with increased awareness about data quality and measurement requirements, in combination with improved metadata collection. Well-documented metadata can not only increase the value and usefulness for the actors collecting the data, but it also the foundation for assessment of potential integration of the data collected by citizens in a broader perspective.
Frontiers Media S.A.
2021
2021
The study aimed at investigating the concentrations and geographical patterns of 11 polychlorinated biphenyls (PCBs) and 15 organochlorine pesticides (OCPs) in reindeer muscle samples (n = 100) collected from 10 grazing districts in Norway, 2009. Concentrations were examined for patterns related to geographical region as well as age and sex of animals. Concentrations measured for PCBs and OCPs in reindeer meat samples were generally low. Geographical patterns were revealed and districts with previous mining activities, military trenches, or those that were in the vicinity of the Russian border exhibited slightly elevated concentrations compared to other districts. Calves (10 months) exhibited higher concentrations than young (1.5 year) and old animals (>2 years) adjusted for sex, whereas males exhibited higher concentrations than females, adjusted for age. All PCB congeners inter-correlated strongly with each other, whereas oxy-chlordane and heptachlor epoxide were the strongest inter-correlated OCP compounds. Concentrations of PCBs and OCPs in reindeer meat were all considerably lower than the maximum levels set for those contaminants in foodstuffs for safe human consumption by the European Commission. Thus, reindeer meat is not likely to be a substantial contributor to the human body burden of persistent organic pollutants.
Elsevier
2021
The historical (1835–2020) deposition of major air pollutants (SO2, NOx, O3 and PM2.5) indoors, as represented by the monumental Edvard Munch paintings (c. 220 m2) installed in 1916 in the Oslo University Aula in Norway, were approximated from the outdoor air concentrations, indoor to outdoor concentration ratios and dry deposition velocities. The annual deposition of the pollutants to the paintings was found to have been 4–25 times lower than has been reported to buildings outdoors in the urban background in the centre of Oslo. It reflected the outdoor deposition but varied less, from 0.3 to 1.2 g m−2 a−1. The accumulated deposition since 1916, and then not considering the regularly performed cleaning of the paintings, was found to have been 43 ± 13 g m−2, and 110 ± 40 g m−2 in a similar situation since 1835. The ozone deposition, and the PM2.5 deposition before the 1960s, were a relatively larger part of the accumulated total indoor (to the paintings) than reported outdoor deposition. About 18 and 33 times more O3 than NOx and PM2.5 deposition was estimated to the paintings in 2020, as compared to the about similar reported outdoor dry deposition of O3 and NOx. The deposition of PM2.5 to the paintings was probably reduced with about 62% (50–80%) after installation of mechanical filtration in 1975 and was estimated to be 0.011 (± 0.006) g m−2 in 2020.
Springer
2022
2022
Monitoring of the atmospheric ozone layer and natural ultraviolet radiation. Annual report 2021.
This report summarizes the results from the Norwegian monitoring programme on stratospheric ozone and UV radiation measurements. The ozone layer has been measured at three locations since 1979: In Oslo/Kjeller, Tromsø/Andøya and Ny-Ålesund. The UV-measurements started in 1995. The results show that there was a significant decrease in stratospheric ozone above Norway between 1979 and 1997. After that, the ozone layer stabilized at a level ~2% below pre-1980 level. The year 2021 was characterized by low total ozone values in June and July, whereas “normal” ozone values were measured during winter and spring.
NILU
2022
BACKGROUND
All mouse strains are different, before choosing a strain for a large study, a small scale study should be done. In this study, we compared young males of two mouse strains, C57BL/6J and the hybrid B6129SF1/J, and gained knowledge on their performance in three different behavioral tests; open field (OF) test, Barnes maze (BM) test and a restraint stress test.
RESULTS
We found that the young males of the C57BL/6J strain spent more time moving in the OF. In the BM, the hybrid covered less ground before reaching the goal box during the first three sessions, than the C57BL/6J. The hybrid left more fecal pellets than C57BL/6J both in OF and BM. During the stress test, the C57BL/6J had a lower corticosterone response than the hybrid.
CONCLUSIONS
Our findings indicate that the C57BL/6J has a presumably higher locomotor activity and/or explorative behavior than the hybrid, while the hybrid appeared more sensitive to stress.
BioMed Central (BMC)
2022
Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components
Norwegian Meteorological Institute
2022