Found 9764 publications. Showing page 347 of 391:
2015
2015
2024
2015
2010
2021
2014
2014
2019
Assessing the environmental burden of disease related to air pollution in Europe in 2022
This report evaluates the health burden due to long-term exposure to PM2.5, NO2, and O3 across Europe in 2022. By analysing all-cause and cause-specific mortality and morbidity, it estimates disease burden using four indicators: Attributable Deaths (AD), Years of Life Lost, Years Lived with Disability, and Disability-Adjusted Life Years (DALY). However, the main results only consider the impact of exposure to levels of pollutants exceeding the current WHO air quality guidelines. The results indicate that PM2.5 contributes the most significant health impact (linked to six diseases), resulting in over 2.7 million DALY across 40 countries, and resulting in 269 000 AD, with mortality rates peaking in Eastern Europe. The report introduces methodological advancements, assessing the long-term impacts of O3 for the first time. Findings underscore the critical need for targeted air quality interventions, as pollution continues to drive significant health losses across the continent, particularly among vulnerable populations.
ETC/HE
2024
2015
2008
Long-term Arctic air monitoring of per- and polyfluoroalkyl substances (PFASs) is essential in assessing their long-range transport and for evaluating the effectiveness of chemical control initiatives. We report for the first time temporal trends of neutral and ionic PFASs in air from three arctic stations: Alert (Canada, 2006–2014); Zeppelin (Svalbard, Norway, 2006–2014) and Andøya (Norway, 2010–2014). The most abundant PFASs were the perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorobutanoic acid (PFBA), and fluorotelomer alcohols (FTOHs). All of these chemicals exhibited increasing trends at Alert with doubling times (t2) of 3.7 years (y) for PFOA, 2.9 y for PFOS, 2.5 y for PFBA, 5.0 y for 8:2 FTOH and 7.0 y for 10:2 FTOH. In contrast, declining or non-changing trends, were observed for PFOA and PFOS at Zeppelin (PFOA, half-life, t1/2 = 7.2 y; PFOS t1/2 = 67 y), and Andøya (PFOA t1/2 = 1.9 y; PFOS t1/2 = 11 y). The differences in air concentrations and in time trends between the three sites may reflect the differences in regional regulations and source regions. We investigate the source region for particle associated compounds using the Lagrangian particle dispersion model FLEXPART. Model results showed that PFOA and PFOS are impacted by air masses originating from the ocean or land. For instance, PFOA at Alert and PFOS at Zeppelin were dominated by oceanic air masses whereas, PFOS at Alert and PFOA at Zeppelin were influenced by air masses transported from land.
Elsevier
2018
2024
2012
2016
BioMed Central (BMC)
2019
2011
2024
Assesment of wind, snow and seasalt. Hammerfest 2009-2010. NILU OR
NILU has made an assesment of windconditions, amount of snow and seasalt impact in Hammerfest. The assesment has been made on behalf of Statnett connected to a projected construction of power supply network.
2011
American Geophysical Union (AGU)
2018
2012