Found 9887 publications. Showing page 358 of 396:
Atmospheric inversions have been used for the past two decades to derive large-scale constraints on the sources and sinks of CO2 into the atmosphere. The development of dense in situ surface observation networks, such as ICOS in Europe, enables in theory inversions at a resolution close to the country scale in Europe. This has led to the development of many regional inversion systems capable of assimilating these high-resolution data, in Europe and elsewhere. The EUROCOM (European atmospheric transport inversion comparison) project is a collaboration between seven European research institutes, which aims at producing a collective assessment of the net carbon flux between the terrestrial ecosystems and the atmosphere in Europe for the period 2006–2015. It aims in particular at investigating the capacity of the inversions to deliver consistent flux estimates from the country scale up to the continental scale.
The project participants were provided with a common database of in situ-observed CO2 concentrations (including the observation sites that are now part of the ICOS network) and were tasked with providing their best estimate of the net terrestrial carbon flux for that period, and for a large domain covering the entire European Union. The inversion systems differ by the transport model, the inversion approach, and the choice of observation and prior constraints, enabling us to widely explore the space of uncertainties.
This paper describes the intercomparison protocol and the participating systems, and it presents the first results from a reference set of inversions, at the continental scale and in four large regions. At the continental scale, the regional inversions support the assumption that European ecosystems are a relatively small sink (−0.21±0.2
Pg C yr−1). We find that the convergence of the regional inversions at this scale is not better than that obtained in state-of-the-art global inversions. However, more robust results are obtained for sub-regions within Europe, and in these areas with dense observational coverage, the objective of delivering robust country-scale flux estimates appears achievable in the near future.
2020
2007
2007
2019
2010
The relative importance of air pollution sources to the population exposure in HCMC, Vietnam. NILU F
2008
2014
The relevance of the location of blocking highs for stratospheric variability in a changing climate.
2015
The relevance of the location of blocking highs for stratospheric variability in a changing climate.
2015
The response of polar mesosphere-low thermospheric (MLT) ozone to stratospheric sudden warming. NILU F
2012
2013
2015
2011
2022
2003
2010
2012
2012
2011
The role of nature-based solutions for improving environmental quality, health and well-being
Nature-based solutions (NbS) have been positioned and implemented in urban areas as solutions for enhancing urban resilience in the face of a wide range of urban challenges. However, there is a lack of recommendations of optimal NbS and appropriate typologies fitting to different contexts and urban design. The analytical frameworks for NbS implementation and impact evaluation, that integrate NbS into local policy frameworks, socio-economic transition pathways, and spatial planning, remain fragmented. In this article, the NbS concept and its related terminologies are first discussed. Second, the types of NbS implemented in Europe are reviewed and their benefits over time are explored, prior to categorizing them and highlighting the key methods, criteria, and indicators to identify and assess the NbS’s impacts, co-benefits, and trade-offs. The latter involved a review of the websites of 52 projects and some relevant publications funded by EU Research and Innovation programs and other relevant publications. The results show that there is a shared understanding that the NbS concept encompasses benefits of restoration and rehabilitation of ecosystems, carbon neutrality, improved environmental quality, health and well-being, and evidence for such benefits. This study also shows that most NbS-related projects and activities in Europe use hybrid approaches, with NbS typically developed, tested, or implemented to target specific types of environmental–social–economic challenges. The results of this study indicate that NbS as a holistic concept would be beneficial in the context of climate action and sustainable solutions to enhance ecosystem resilience and adaptive capacity within cities. As such, this article provides a snapshot of the role of NbS in urban sustainability development, a guide to the state-of-the-art, and key messages and recommendations of this rapidly emerging and evolving field.
MDPI
2021