Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 9746 publications. Showing page 361 of 390:

Publication  
Year  
Category

Total oxidizable precursors assay for PFAS in human serum

Cioni, Lara; Nikiforov, Vladimir; Miranda Fernandes Coelho, Ana Carolina; Sandanger, Torkjel M; Herzke, Dorte

Per- and polyfluoroalkyl substances (PFAS) are a class of chemicals including over 4700 substances. As a limited number of PFAS is routinely analyzed in human serum, complementary analytical methods are required to characterize the overlooked fraction. A promising tool is the total oxidizable precursors (TOP) assay to look for precursors by oxidation to perfluoroalkyl acids (PFAA). The TOP assay was originally developed for large volumes of water and had to be adapted for 250 μL of human serum. Optimization of the method was performed on serum samples spiked with model precursors. Oxidative conditions similar to previous TOP assay methods were not sufficient for complete oxidation of model precursors. Prolonged heating time (24 h) and higher oxidant amount (95 mg of Na2S2O8 per 225 μL of serum) were needed for complete conversion of the model precursors and accomplishing PFAA yields of 35–100 %. As some precursors are not fully converted to PFAA, the TOP assay can only provide semi-quantitative estimates of oxidizable precursors in human serum. However, the TOP assay can be used to give indications about the identity of unknown precursors by evaluating the oxidation products, including perfluoroalkyl sulfonic acids (PFSA) and perfluoroalkyl ether carboxylic acids (PFECA). The optimized TOP assay for human serum opens the possibility for high-throughput screening of human serum for undetected PFAA precursors.

Elsevier

2022

Total ozone and UV measurements at the Norwegian Troll Station, Antarctica.

Hansen, G.; Svendby, T.; Dahlback, A.; Edvardsen, K.

2016

Total ozone loss during the 2005/2006 Arctic winter and comparison to previous years. Poster presentation. NILU PP

Goutail, F.; Lefèvre, F.; Pommereau, J.P.; van Roozendael, M.; Chipperfield, M.; Feng, W.; Kyro, E.; Andersen, S.B.; Stebel, K.; Dorokhov, V.

2006

Total ozone loss during the 2006/07 Arctic winter and comparison to previous year.

Goutail, F.; Lefèvre, F.; Pommereau, J.P.; Chipperfield, M.; Feng, W.; van Roozendael, M.; Andersen, S.B.; Stebel, K.; Dorokhov, V.; Kyro, E.; Fraser, A.; Strong, K.

2007

Total Ozone Loss during the 2007/2008 Arctic Winter and Comparison to Previous Years. NILU PP

Goutail, F.; Lefèvre, F.; Pommereau, J.P.; Pazmiño, A.; Chipperfield, M.; Feng, W.; Van Roozendael, M.; Eriksen, P.; Stebel, K.; Dorokhov, V.; Kyro, E.; Adams, C.; Fraser, A.M.; Strong, K.

2008

Total Ozone Loss during the 2007/2008 Arctic Winter and Comparison to Previous Years. NILU PP

Goutail, F.; Lefèvre, F.; Pommereau, J.P.; Pazmiño, A.; Chipperfield, M.; Feng, W.; Van Roozendael, M.; Eriksen, P.; Stebel, K.; Dorokhov, V.; Kyro, E.; Adams, C.; Fraser, A.M.; Strong, K.

2008

Total ozone loss during the 2008/2009 Arctic winter and comparison to previous years. NILU PP

Goutail, F.; Lefèvre, F.; Pommereau, J.P.; Pazmiño, A.; Chipperfield, M.; Feng, W.; Van Roozendael, M.; Eriksen, P.; Stebel, K.; Dorokhov, V.; Kyro, E.; Adams, C.; Fraser, A.M.; Strong, K.

2009

Total ozone loss during the 2009/10 Arctic winter and comparison to previous years. NILU PP

Goutail, F.; Lefèvre, F.; Kuttippurath, J.; Pazmiño, A.; Pommereau, J.P.; Chipperfield, M.; Feng, W.; Van Roozendael, M.; Eriksen, P.; Stebel, K.; Dorokhov, V.; Kyrö, E.; Adams, C.; Strong, K.

2010

Total ozone loss during the 2011/12 Arctic winter and comparison to previous years.

Goutail, F.; Lefevre, F.; Pommereau, J.P.; Pazmino, A.; Chipperfield, M.; Feng, W.; Van Roozendael, M.; Eriksen, P.; Stebel, K.; Dorokhov, V.; Kyro, E.; Zhao, X.; Strong, K.

2012

Total ozone loss during the 2012/13 Arctic winter and comparison to previous years.

Goutail, F.; Lefevre, F.; Pommereau, J.-P.; Pazmino, A.; Chipperfield, M.; Feng, W.; Van Roozendael, M.; Eriksen, P.; Stebel, K.; Dorokhov, V.; Kivi, R.; Zhao, X.; Strong, K.

2013

Total ozone loss during the 2013/14 Arctic winter and comparison to previous years.

Goutail, F.; Lefèvre, F.; Pommereau, J.-P.; Pazmino, A.; Chipperfield, M.; Feng, W.; Van Roozendael, M.; Eriksen, P.; Stebel, K.; Dorokhov, V.; Kivi, R.; Zhao, X.; Strong, K.

2014

Total ozone loss during the 2014/15 Arctic winter and comparison to previous years.

Goutail, F.; Lefèvre, F.; Pommereau, J.-P.; Pazmino, A.; Chipperfield, M.; Feng, W.; Van Roozendael, M.; Eriksen, P.; Stebel, K.; Kivi, R.; Zhao, X.; Strong, K.

2015

Total ozone loss during the 2015/16 Arctic winter and comparison to previous years.

Goutail, F.; Lefèvre, F.; Pazmiño, A.; Pommereau, J. P.; Chipperfield, M.; Feng, W.; Van Roozendael, M.; Eriksen, P.; Stebel, K.; Kivi, R.; Bognar, K.; Zhao, X.; Walker, K.; Strong, K.

2016

Total ozone loss during the 2016/17 Arctic winter and comparison to previous years.

Goutail, F.; Pommereau, J.-P.; Pazmino, A.; Lefevre, F.; Chipperfield, M.; Feng, W.; Van Roozendael, M.; Eriksen, P.; Stebel, K.; Kivi, R.; Bognar, K.; Strong, K.; Walker, K.

2017

Total ozone loss during the 2018/19 Arctic winter and comparison to previous years

Goutail, Florence; Pommereau, Jean-Pierre; Pazmino, Andrea; Lefevre, Franck; Clerbaux, Cathy; Boynard, Anne; Hadji-Lazaro, Juliette; Chipperfield, Martyn; Feng, Wuhu; Van Roozendael, Michel; Jepsen, Nis; Hansen, Georg; Kivi, Rigel; Bognar, Kristof; Strong, Kimberly; Walker, Kaley A.

2019

Total ozone loss during the 2019/20 Arctic winter and comparison to previous years

Goutail, Florence; Pommereau, Jean-Pierre; Pazmino, Andrea; Lefevre, Franck; Clerbaux, Cathy; Boynard, Anne; Hadji-Lazaro, Juliette; Chipperfield, Martyn; Feng, Wuhu; Van Roozendael, Michel; Jepsen, Nis; Hansen, Georg Heinrich; Kivi, Rigel; Bognar, Kristof; Strong, Kimberly; Walker, Kaley

2020

Total ozone loss during the 2021/22 Arctic winter and comparison to previous years

Pazmino, Andrea; Goutail, Florence; Pommereau, Jean-Pierre; Lefevre, Franck; Godin-Beekmann, Sophie; Hauchecorne, Alain; Lecouffe, Audrey; Chipperfield, Martyn P.; Feng, Wuhu; van Roozendael, Michel; Jepsen, Nis; Hansen, Georg H.; Kivi, Rigel; Alwarda, Ramina; Strong, Kimberly; Walker, Kaley A.

2022

Total ozone observations during the past 80 years. Advances in Global Change Research, vol. 33

Brönnimann, S.; Vogler, C.; Staehelin, J.; Stolarski, R.; Hansen, G.

2008

Total ozone trends and variability at three northern high-latitude stations

Bernet, Leonie; Svendby, Tove Marit; Hansen, Georg H.; Orsolini, Yvan J.; Dahlback, Arne; Goutail, Florence; Pazmino, Andrea; Petkov, Boyan

2022

Total Ozone Trends at Northern High Latitudes from Ground-based measurements

Bernet, Leonie; Dahlback, Arne; Goutail, Florence; Hansen, Georg Heinrich; Orsolini, Yvan J.; Pazminño, Andrea; Svendby, Tove Marit

2021

Total ozone trends at three northern high-latitude stations

Bernet, Leonie; Svendby, Tove Marit; Hansen, Georg Heinrich; Orsolini, Yvan; Dahlback, Arne; Goutail, Florence; Pazmino, Andrea; Petkov, Boyan; Kylling, Arve

After the decrease of ozone-depleting substances (ODSs) as a consequence of the Montreal Protocol, it is still challenging to detect a recovery in the total column amount of ozone (total ozone) at northern high latitudes. To assess regional total ozone changes in the “ozone-recovery” period (2000–2020) at northern high latitudes, this study investigates trends from ground-based total ozone measurements at three stations in Norway (Oslo, Andøya, and Ny-Ålesund). For this purpose, we combine measurements from Brewer spectrophotometers, ground-based UV filter radiometers (GUVs), and a SAOZ (Système d'Analyse par Observation Zénithale) instrument. The Brewer measurements have been extended to work under cloudy conditions using the global irradiance (GI) technique, which is also presented in this study. We derive trends from the combined ground-based time series with the multiple linear regression model from the Long-term Ozone Trends and Uncertainties in the Stratosphere (LOTUS) project. We evaluate various predictors in the regression model and found that tropopause pressure and lower-stratospheric temperature contribute most to ozone variability at the three stations. We report significantly positive annual trends at Andøya (0.9±0.7 % per decade) and Ny-Ålesund (1.5±0.1 % per decade) and no significant annual trend at Oslo (0.1±0.5 % per decade) but significantly positive trends in autumn at all stations. Finally we found positive but insignificant trends of around 3 % per decade in March at all three stations, which may be an indication of Arctic springtime ozone recovery. Our results contribute to a better understanding of regional total ozone trends at northern high latitudes, which is essential to assess how Arctic ozone responds to changes in ODSs and to climate change.

2023

Publication
Year
Category