Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 9746 publications. Showing page 385 of 390:

Publication  
Year  
Category

Status report of air quality in Europe for year 2023, using validated and up-to-date data

Targa, Jaume; Colina, María; Banyuls, Lorena; Ortiz, Alberto González; Soares, Joana

ETC/HE

2024

Screening Programme 2023

Gundersen, Cathrine Brecke; Nipen, Maja; Reid, Malcolm James; Ruus, Anders; Rostkowski, Pawel; Blévin, Pierre; Jourdain, Eve Marie; Junge, Claudia; Bæk, Kine; Rundberget, Thomas; Nikiforov, Vladimir; Borgen, Anders; Halse, Anne Karine; Vogelsang, Christian; Brkljacic, Marijana Stenrud; Moy, Siri Røang; Ranneklev, Sissel Brit

Norsk institutt for vannforskning

2024

How does suburban sprawl vs. compact city development influence urban transport performance and its emissions?

Drabicki, Arkadiusz; Lopez-Aparicio, Susana; Grythe, Henrik; Chwastek, Konrad; Górska, Lidia

2024

Risikovurdering av grillet mat.

Kvalem, Helen Engelstad; Alexander, Jan; Bukhvalova, Barbara Alexandra; Dahl, Lisbeth; Knutsen, Helle Katrine; Olsen, Ann-Karin Hardie; Schlabach, Martin; Mariussen, Espen

Universitetsforlaget

2024

The Global Fire Assimilation System (GFAS) & Peat fire emissions

Kaiser, Johannes; Stebel, Kerstin; Schneider, Philipp

2024

Ekspert: Slik blir vi skadet av UV-stråling når sola gløder

Svendby, Tove Marit (interview subject); Kristiansen, Martin Næss (journalist)

2024

In memory of Dr. Ir. Gudrun Koppen (1969–2024)

Collins, Andrew Richard Sherman; Azqueta, Oscoz Amaya; Schoeters, Greet; Slingers, Gitte; Dusinska, Maria; Langie, Sabine A.S.

2024

Zürich II Statement on Per- and Polyfluoroalkyl Substances (PFASs): Scientific and Regulatory Needs

DeWitt, Jamie C.; Glüge, Juliane; Cousins, Ian T.; Goldenman, Gretta; Herzke, Dorte; Lohmann, Rainer; Miller, Mark; Ng, Carla A.; Patton, Sharyle; Trier, Xenia; Vierke, Lena; Wang, Zhanyun; Adu-Kumi, Sam; Balan, Simona; Buser, Andreas M.; Fletcher, Tony; Haug, Line Småstuen; Heggelund, Audun; Huang, Jun; Kaserzon, Sarit; Leonel, Juliana; Sheriff, Ishmail; Shi, Ya-Li; Valsecchi, Sara; Scheringer, Martin

Per- and polyfluoroalkyl substances (PFASs) are a class of synthetic organic chemicals of global concern. A group of 36 scientists and regulators from 18 countries held a hybrid workshop in 2022 in Zürich, Switzerland. The workshop, a sequel to a previous Zürich workshop held in 2017, deliberated on progress in the last five years and discussed further needs for cooperative scientific research and regulatory action on PFASs. This review reflects discussion and insights gained during and after this workshop and summarizes key signs of progress in science and policy, ongoing critical issues to be addressed, and possible ways forward. Some key take home messages include: 1) understanding of human health effects continues to develop dramatically, 2) regulatory guidelines continue to drop, 3) better understanding of emissions and contamination levels is needed in more parts of the world, 4) analytical methods, while improving, still only cover around 50 PFASs, and 5) discussions of how to group PFASs for regulation (including subgroupings) have gathered momentum with several jurisdictions proposing restricting a large proportion of PFAS uses. It was concluded that more multi-group exchanges are needed in the future and that there should be a greater diversity of participants at future workshops.

American Chemical Society (ACS)

2024

Two-Stage Feature Engineering to Predict Air Pollutants in Urban Areas

Naz, Fareena; Fahim, Muhammad; Cheema, Adnan Ahmad; Nguyen, Trung Viet; Cao, Tuan-Vu; Hunter, Ruth; Duong, Trung Q.

Air pollution is a global challenge to human health and the ecological environment. Identifying the relationship among pollutants, their fundamental sources and detrimental effects on health and mental well-being is critical in order to implement appropriate countermeasures. The way forward to address this issue and assess air quality is through accurate air pollution prediction. Such prediction can subsequently assist governing bodies in making prompt, evidence-based decisions and prevent further harm to our urban environment, public health, and climate, all of which co-benefit our economy. In this study, the main objective is to explore the strength of features and proposed a two stage feature engineering approach, which fuses the advantage of influential factors along with the decomposition approach and generates an optimum feature combination for five major pollutants including Nitrogen Dioxide (NO 2 ), Ozone (O 3 ), Sulphur Dioxide (SO 2 ), and Particulate Matter (PM2.5, and PM10). The experiments are conducted using a dataset from 2015 to 2020 which is publicly available and is collected from Belfast-based air quality monitoring stations in Northern Ireland, UK. In stage-1, using the dataset new features such as trigonometric and statistical features are created to capture their dependency on the target pollutant and generated correlation-inspired best feature combinations to improve forecasting model performance. This is further enhanced in stage-2 by an optimum feature combination which is an integration of stage-1 and Variational Mode Decomposition (VMD) based features. This study employed a simplified Long Short Term Memory (LSTM) neural network and proposed a single-step forecasting model to predict multivariate time series data. Three performance indicators are used to evaluate the effectiveness of forecasting model: (a) root mean square error (RMSE), (b) mean absolute error (MAE), and (c) R-squared (R 2 ). The results demonstrate the effectiveness of proposed approach with 13% improvement in performance (in terms of R 2 ) and the lowest error scores for both RMSE and MAE.

IEEE (Institute of Electrical and Electronics Engineers)

2024

Reconciliation of methane emissions in European national inventory reports with atmospheric measurements

Houweling, Sander; Berchet, Antoine; Brunner, Dominik; Cheliotis, Ioannis; Fenjuan, Wang; Ioannidis, Elefterios; Koch, Frank-Thomas; Lin, Hong; Maksyutov, Shamil; Meesters, Antoon; Monteil, Guillaume; Pison, Isabelle; Ren, Ge; Scholze, Marko; Sollum, Espen; Steiner, Michael; Thompson, Rona Louise; Tsuruta, Aki

2024

Unexpected anthropogenic emission decreases explain recent atmospheric mercury concentration declines

Feinberg, Aryeh; Selin, Noelle E.; Braban, Christine F.; Chang, Kai-Lan; Custódio, Danilo; Jaffe, Daniel A.; Kyllönen, Katriina; Landis, Matthew S.; Leeson, Sarah R.; Luke, Winston; Molepo, Koketso M.; Murovec, Marijana; Nerentorp Mastromonaco, Michelle G.; Pfaffhuber, Katrine Aspmo; Rüdiger, Julian; Sheu, Guey-Rong; St Louis, Vincent L.

2024

Chemicals of Emerging Concern (CECs) in Coastal Waters: Environmental Impacts and Management Strategies

Kallenborn, Roland; Ali, Aasim M.; Hartz, William Frederik; Zhang, Zifeng; Li, Yifan

2024

Måling av gasser i Statsarkivets lokaler i Trondheim. Fase 2 - 2024

Berglen, Tore Flatlandsmo; Håland, Alexander; Grøntoft, Terje

Denne rapporten viser resultater fra fase 2 i måleprosjektet NILU har utført ved Statsarkivet i Trondheim. Det er gjort prøvetaking og analyse i en periode på sju dager fra 23. til 30. mai ved to lokaliteter, én innendørs og én utendørs. Totalkonsentrasjonen av VOC’er (TVOC) ble målt til 135 µg/m3 gitt som toluen-ekvivalenter ved lokaliteten inne (MAG A, Reol 097) og 33 µg/m3 ved lokaliteten ute. Resultatene synliggjør effekten av innendørs ventilasjonssystemer og begge studiene vil brukes av Statsarkivet i sitt videre arbeid med innendørs luftkvalitet.

NILU

2024

Atmospheric monitoring of POPs at the Trollhaugen observatory

Halvorsen, Helene Lunder; Bäcklund, Are; Aas, Wenche; Bohlin-Nizzetto, Pernilla

2024

Estimation of spatio-temporal source of microplastics using Bayesian Neural networks

Brožová, Antonie; Šmídl, Václav; Tichý, Ondřej; Evangeliou, Nikolaos

2024

Atmospheric Microplastic in the Arctic and Mainland Norway; occurrence, composition and sources

Schmidt, Natascha; Herzke, Dorte; Eckhardt, Sabine; Evangeliou, Nikolaos

2024

Global Vegetation Fires in 2023 As Seen By GFAS in CAMS

Kaiser, Johannes; Parrington, Mark; Inness, Antje; Flemming, Johannes; Remy, Samuel; Huijnen, Vincent

2024

Where do contaminants in the Arctic come from? Meet the Nested Exposure Model.

Krogseth, Ingjerd Sunde; Breivik, Knut; Eckhardt, Sabine; Solbakken, Christine Forsetlund

2024

Lack of cytotoxic and genotoxic effects of mPEG-silane coated iron(III) oxide nanoparticles doped with magnesium despite cellular uptake in cancerous and noncancerous lung cells

Sikorska, Malgorzata; Ruzycka-Ayoush, Monika; Rios Mondragon, Ivan; Longhin, Eleonora Marta; Meczynska-Wielgosz, Sylwia; Wojewódzka, Maria; Kowalczyk, Agata; Kasprzak, Artur; Nowakowska, Julita; Sobczak, Kamil; Muszynska, Magdalena; Cimpan, Mihaela Roxana; Rundén-Pran, Elise; Shaposhnikov, Sergey; Kruszewski, Marcin; Dusinska, Maria; Nowicka, Anna M.; Grudzinski, Ireneusz P.

Elsevier

2024

Evaluation of modelled versus observed non-methane volatile organic compounds at European Monitoring and Evaluation Programme sites in Europe

Ge, Yao; Solberg, Sverre; Heal, Mathew R; Reimann, Stefan; van Caspel, Willem; Hellack, Bryan; Salameh, Therese; Simpson, David

Atmospheric volatile organic compounds (VOCs) constitute a wide range of species, acting as precursors to ozone and aerosol formation. Atmospheric chemistry and transport models (CTMs) are crucial to understanding the emissions, distribution, and impacts of VOCs. Given the uncertainties in VOC emissions, lack of evaluation studies, and recent changes in emissions, this work adapts the European Monitoring and Evaluation Programme Meteorological Synthesizing Centre – West (EMEP MSC-W) CTM to evaluate emission inventories in Europe. Here we undertake the first intensive model–measurement comparison of VOCs in 2 decades. The modelled surface concentrations are evaluated both spatially and temporally, using measurements from the regular EMEP monitoring network in 2018 and 2019, as well as a 2022 campaign. To achieve this, we utilised the UK National Atmospheric Emissions Inventory to derive explicit emission profiles for individual species and employed a tracer method to produce pure concentrations that are directly comparable to observations.

The degree to which the modelled and measured VOCs agree varies depending on the specific species. The model successfully captures the overall spatial and temporal variations of major alkanes (e.g. ethane, n-butane) and unsaturated species (e.g. ethene, benzene) but less so for propane, i-butane, and ethyne. This discrepancy underscores potential issues in the boundary conditions for the latter species and in their primary emissions from, in particular, the solvent and road transport sectors. Specifically, potential missing propane emissions and issues with its boundary conditions are highlighted by large model underestimations and smaller propane-to-ethane ratios compared to the measurement. Meanwhile, both the model and measurements show strong linear correlations among butane isomers and among pentane isomers, indicating common sources for these pairs of isomers. However, modelled ratios of i-butane to n-butane and i-pentane to n-pentane are approximately one-third of the measured ratios, which is largely driven by significant emissions of n-butane and n-pentane from the solvent sector. This suggests issues with the speciation profile of the solvent sector, underrepresented contributions from transport and fuel evaporation sectors in current inventories, or both. Furthermore, the modelled ethene-to-ethyne and benzene-to-ethyne ratios differ significantly from measured ratios. The different model performance strongly points to shortcomings in the spatial and temporal patterns and magnitudes of ethyne emissions, especially during winter. For OVOCs, the modelled and measured concentrations of methanal and methylglyoxal show a good agreement, despite a moderate underestimation by the model in summer. This discrepancy could be attributed to an underestimation of contributions from biogenic sources or possibly a model overestimation of their photolytic loss in summer. However, the insufficiency of suitable measurements limits the evaluation of other OVOCs. Finally, model simulations employing the CAMS inventory show slightly better agreements with measurements than those using the Centre on Emission Inventories and Projections (CEIP) inventory. This enhancement is likely due to the CAMS inventory's detailed segmentation of the road transport sector, including its associated sub-sector-specific emission profiles. Given this improvement, alongside the previously mentioned concerns about the model's biased estimations of various VOC ratios, future efforts should focus on a more detailed breakdown of dominant emission sectors (e.g. solvents) and the refinement of their speciation profiles to improve model accuracy.

2024

Engagement of early career researchers in collaborative assessments of IPCC reports: achievements and insights

Moreno-Ibáñez, Marta; Casado, Mathieu; Gremion, Gwenaëlle; Rabanal, Valentina; Adojoh, Onema; Anoruo, Chukwuma; Arshad, Adnan; Bahar, Faten Attig; Bello, Cinthya; Bergstedt, Helena; Caccavo, Jilda Alicia; Champollion, Nicolas; Choy, Emily S.; De Los Ríos, María Fernanda; Detlef, Henrieka; Dey, Rahul; Gamal, Gamil; Guímaro, Hugo R.; Hancock, Susana; Hansen, Christel; Hare, Vincent; Höfer, Juan; Jabir, Thajudeen; Jain, Shipra; Jawak, Shridhar Digambar; Latonin, Mikhail; Martin, Joseph; Fredy Mojica, Jhon; O’Hara, Ryan; Onafeso, Olumide; Prasath, R. Arun; Alves, Eduardo Queiroz; Raez-Villanueva, Sergio; Rosenbaum, Paul; Ruiz-Pereira, Sebastián; Savaglia, Valentina; van Soest, Maud; Vural, Deniz

The participation of a diverse –in terms of geography, discipline and gender– group of Early Career Researchers (ECRs) in the peer review process can help alleviate the workload of senior researchers and counteract the perceptual biases that the latter tend to show. Moreover, ECRs can benefit from developing skills that are often not included in educational programs. From 2018 to 2021, the Association of Polar Early Career Scientists, in collaboration with other associations, organized six group reviews of the Intergovernmental Panel on Climate Change (IPCC) reports by a total of more than 600 ECRs from over 70 different countries. This study aims to evaluate this group review in terms of its contribution to the production of scientific knowledge, and as a career development opportunity for ECRs. The data analyzed consists of application forms, review comments, and feedback surveys that were collected during each review process. The results of this study show that, overall, the group reviews were a success in terms of the experience of ECRs and their contribution to the peer review of the IPCC reports. Most survey respondents considered the general organization of the group reviews satisfactory and expressed interest in participating in future group reviews. However, most participants did not engage in discussions with their peers, which constitutes a missed opportunity to engage in active learning and the shared production of knowledge. ECRs made a significant contribution to the review of the IPCC reports by producing an average of 2,422 ± 532 comments per group review, 36% of which were substantive. PhD students were shown to be as proficient reviewers as postdoctoral researchers and faculty reviewers. More importantly, the diversity of reviewers in terms of geography and discipline, together with the fact that they are ECRs, can help produce more balanced scientific reports since they bring new perspectives, thus counteracting the biases that senior researchers have. These group reviews could be improved by providing more comprehensive training and facilitating communication among reviewers so that they can engage in meaningful exchanges. We conclude that the IPCC should formalize the inclusion of ECRs in future reviews of the IPCC reports.

Frontiers Media S.A.

2024

Publication
Year
Category