Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 9746 publications. Showing page 388 of 390:

Publication  
Year  
Category

Volatile Organic Compounds of Diverse Origins and Their Changes Associated With Cultivar Decay in a Fungus-Farming Termite

Vidkjær, Nanna Hjort; Schmidt, Suzanne; Davie-Martin, Cleo Lisa; Silué, Kolotchèlèma Simon; Koné, N'golo Abdoulaye; Rinnan, Riikka; Poulsen, Michael

Fungus-farming termites cultivate a Termitomyces fungus monoculture in enclosed gardens (combs) free of other fungi, except during colony declines, where Pseudoxylaria spp. stowaway fungi appear and take over combs. Here, we determined Volatile Organic Compounds (VOCs) of healthy Macrotermes bellicosus nests in nature and VOC changes associated with comb decay during Pseudoxylaria takeover. We identified 443 VOCs and unique volatilomes across samples and nest volatilomes that were mainly composed of fungus comb VOCs with termite contributions. Few comb VOCs were linked to chemical changes during decay, but longipinocarvone and longiverbenone were only emitted during comb decay. These terpenes may be involved in Termitomyces defence against antagonistic fungi or in fungus-termite signalling of comb state. Both comb and Pseudoxylaria biomass volatilomes contained many VOCs with antimicrobial activity that may serve in maintaining healthy Termitomyces monocultures or aid in the antagonistic takeover by Pseudoxylaria during colony decline. We further observed a series of oxylipins with known functions in the regulation of fungus germination, growth, and secondary metabolite production. Our volatilome map of the fungus-farming termite symbiosis provides new insights into the chemistry regulating complex interactions and serves as a valuable guide for future work on the roles of VOCs in symbioses.

John Wiley & Sons

2025

Sovereignty in Automated Stroke Prediction and Recommendation System with Explanations and Semantic Reasoning

Chatterjee, Ayan

Personalized approaches are required for stroke management due to the variability in symptoms, triggers, and patient characteristics. An innovative stroke recommendation system that integrates automatic predictive analysis with semantic knowledge to provide personalized recommendations for stroke management is proposed by this paper. Stroke exacerbation are predicted and the recommendations are enhanced by the system, which leverages automatic Tree-based Pipeline Optimization Tool (TPOT) and semantic knowledge represented in an OWL Ontology (StrokeOnto). Digital sovereignty is addressed by ensuring the secure and autonomous control over patient data, supporting data sovereignty and compliance with jurisdictional data privacy laws. Furthermore, classifications are explained with Local Interpretable Model-Agnostic Explanations (LIME) to identify feature importance. Tailored interventions based on individual patient profiles are provided by this conceptual model, aiming to improve stroke management. The proposed model has been verified using public stroke dataset, and the same dataset has been utilized to support ontology development and verification. In TPOT, the best Variance Threshold + DecisionTree Classifier pipeline has outperformed other supervised machine learning models with an accuracy of 95.2%, for the used datasets. The Variance Threshold method reduces feature dimensionality with variance below a specified threshold of 0.1 to enhance predictive accuracy. To implement and evaluate the proposed model in clinical settings, further development and validation with more diverse and robust datasets are required.

Elsevier

2025

A European aerosol phenomenology – 9: Light absorption properties of carbonaceous aerosol particles across surface Europe

Rovira, Jordi; Savadkoohi, Marjan; Močnik, Griša; Chen, Gang I.; Aas, Wenche; Alados-Arboledas, Lucas; Artiñano, Begoña; Aurela, Minna; Backman, John; Banerji, Sujai; Beddows, David; Brem, Benjamin T.; Chazeau, Benjamin; Coen, Martine Collaud; Colombi, Cristina; Conil, Sébastien; Costabile, Francesca; Coz, Esther; De Brito, Joel F.; Eleftheriadis, Kostas; Favez, Olivier; Flentje, Harald; Freney, Evelyn; Gregorič, Asta; Gysel-Beer, Martin; Harrison, Roy M.; Hueglin, Christoph; Hyvärinen, Antti; Ivančič, Matic; Kalogridis, Athina-Cerise; Keernik, Hannes; Konstantinos, Granakis; Laj, Paolo; Liakakou, Eleni; Lin, Chunshui; Listrani, Stefano; Luoma, Krista; Maasikmets, Marek; Manninen, Hanna; Marchand, Nicolas; Dos Santos, Sebastiao Martins; Mbengue, Saliou; Mihalopoulos, Nikos; Nicolae, Doina; Niemi, Jarkko V; Norman, Michael; Ovadnevaite, Jurgita; Petit, Jean Eudes; Platt, Stephen Matthew; Prévôt, André S.H.; Pujadas, Manuel; Putaud, Jean-Philippe; Riffault, Véronique; Rigler, Martin; Rinaldi, Matteo; Schwarz, Jaroslav; Silvergren, Sanna; Teinemaa, Erik; Teinilä, Kimmo; Timonen, Hilkka; Titos, Gloria; Tobler, Anna; Vasilescu, Jeni; Vratolis, Stergios; Yttri, Karl Espen; Yubero, Eduardo; Zíková, Naděžda; Alastuey, Andrés; Petäjä, Tuukka; Querol, Xavier; Yus-Díez, Jesús; Pandolfi, Marco

Carbonaceous aerosols (CA), composed of black carbon (BC) and organic matter (OM), significantly impact the climate. Light absorption properties of CA, particularly of BC and brown carbon (BrC), are crucial due to their contribution to global and regional warming. We present the absorption properties of BC (bAbs,BC) and BrC (bAbs,BrC) inferred using Aethalometer data from 44 European sites covering different environments (traffic (TR), urban (UB), suburban (SUB), regional background (RB) and mountain (M)). Absorption coefficients showed a clear relationship with station setting decreasing as follows: TR > UB > SUB > RB > M, with exceptions. The contribution of bAbs,BrC to total absorption (bAbs), i.e. %AbsBrC, was lower at traffic sites (11–20 %), exceeding 30 % at some SUB and RB sites. Low AAE values were observed at TR sites, due to the dominance of internal combustion emissions, and at some remote RB/M sites, likely due to the lack of proximity to BrC sources, insufficient secondary processes generating BrC or the effect of photobleaching during transport. Higher bAbs and AAE were observed in Central/Eastern Europe compared to Western/Northern Europe, due to higher coal and biomass burning emissions in the east. Seasonal analysis showed increased bAbs, bAbs,BC, bAbs,BrC in winter, with stronger %AbsBrC, leading to higher AAE. Diel cycles of bAbs,BC peaked during morning and evening rush hours, whereas bAbs,BrC, %AbsBrC, AAE, and AAEBrC peaked at night when emissions from household activities accumulated. Decade-long trends analyses demonstrated a decrease in bAbs, due to reduction of BC emissions, while bAbs,BrC and AAE increased, suggesting a shift in CA composition, with a relative increase in BrC over BC. This study provides a unique dataset to assess the BrC effects on climate and confirms that BrC can contribute significantly to UV–VIS radiation presenting highly variable absorption properties in Europe.

Elsevier

2025

Transformation Product Formation and Removal Efficiency of Emerging Pollutants by Three-Dimensional Ceramic Carbon Foam-Supported Electrochemical Oxidation

Froment, Jean Francois; Pierpaoli, Mattia; Gundersen, Hans; Davanger, Kirsten; Bjørneby, Stine Marie; Eikenes, Heidi; Skowierzak, Grzegorz; Ślepskic, Paweł; Jakóbczyk, Paweł; Bogdanowicz, Robert; Ossowski, Tadeusz; Rostkowski, Pawel

This study evaluated galvanostatic three-dimensional electrolysis using ceramic carbon foam anodes for the removal of emerging pollutants from wastewater and assessed transformation product formation. Five pollutants (paracetamol, triclosan, bisphenol A, caffeine, and diclofenac) were selected based on their detection in wastewater treatment plant effluents. Electrochemical oxidation was carried out on artificial wastewater spiked with these compounds under galvanostatic conditions (50, 125, and 250 mA) using a stainless steel tube electrolyzer with three ceramic carbon foam anodes and a stainless steel cathode. Decreasing pollutant concentrations were observed in all of the experiments. Nontarget chemical analysis using liquid chromatography coupled to a high-resolution mass spectrometer detected 338 features with increasing intensity including 12 confirmed transformation products (TPs). Real wastewater effluent spiked with the pollutants was then electrolyzed, again showing pollutant removal, with 9 of the 12 previously identified TPs present and increasing. Two TPs (benzamide and 2,4-dichlorophenol) are known toxicants, indicating the formation of a potential toxic by-product during electrolysis. Furthermore, electrolysis of unspiked real wastewater revealed the removal of five pharmaceuticals and a drug metabolite. While demonstrating electrolysis’ ability to degrade pollutants in wastewater, the study underscores the need to investigate transformation product formation and toxicity implications of the electrolysis process.

American Chemical Society (ACS)

2025

Omgivelsesmålinger av fluor, SO2, tungmetaller, PAH og støvnedfall rundt Alcoa Mosjøen. 22. mai – 19. august 2024

Hak, Claudia; Mortensen, Tore; Uggerud, Hilde Thelle; Vadset, Marit; Andresen, Erik; Enge, Ellen Katrin

På oppdrag fra Alcoa Norway AS dept. Mosjøen har NILU utført målinger i omgivelses-luft rundt smelteverket i Mosjøen. Målingene ble utført med aktiv prøvetaking (fluor, SO2, metaller, PAH, PM10) og passiv prøvetaking (SO2, støvnedfall). Måleprosjektet ble utført i perioden 22. mai – 19. august 2024. Alle målte komponenter var godt under de individuelle grenseverdier, målsettingsverdier og luftkvalitetskriterier i måleperioden. Siden Mosjøen er mest utsatt for utslipp fra aluminiumsverket i sommermånedene, pga. hovedvindretning fra fjorden, over smelteverket mot byen, blir måleresultatene et øvre anslag for bidraget fra smelteverket til konsentrasjonene i Mosjøen over hele året.

NILU

2025

Metanutslipp på vei opp

Platt, Stephen Matthew (interview subject); Ursin, Lars (journalist)

2025

2000 years of climate, environmental, and societal variability in southeastern Norway from the annually laminated sediments of Lake Sagtjernet

Ballo, Eirik Gottschalk; D’Andrea, William J.; Høeg, Helge Irgens; Loftsgarden, Kjetil; Bajard, Manon Juliette Andree; Eckhardt, Sabine; Cassiani, Massimo; Evangeliou, Nikolaos; Bakke, Jostein; Krüger, Kirstin

Elsevier

2025

Balancing agricultural development and biodiversity conservation with rapid urbanization: Insights from multiscale bird diversity in rural landscapes

Chen, Yixue; Liu, Yuhong; Zhang, Xuanbo; Liu, Jiayuan; Chen, Min; Chen, Cheng; Mustafa, Ghulam; An, Shuqing; Liu, Hai Ying

Elsevier

2025

CompSafeNano project: NanoInformatics approaches for safe-by-design nanomaterials

Zouraris, Dimitrios; Mavrogiorgis, Angelos; Tsoumanis, Andreas; Saarimaki, Laura Aliisa; del Giudice, Giusy; Federico, Antonio; Serra, Angela; Greco, Dario; Rouse, Ian; Subbotina, Julia; Lobaskin, Vladimir; Jagiello, Karolina; Ciura, Krzesimir; Judzinska, Beata; Mikolajczyk, Alicja; Sosnowska, Anita; Puzyn, Tomasz; Gulumian, Mary; Wepener, Victor; Martinez, Diego S. T.; Petry, Romana; El Yamani, Naouale; Rundén-Pran, Elise; Murugadoss, Sivakumar; Shaposhnikov, Sergey; Minadakis, Vasileios; Tsiros, Periklis; Sarimveis, Harry; Longhin, Eleonora Marta; Sengupta, Tanima; Olsen, Ann-Karin Hardie; Skakalova, Viera; Hutar, Peter; Dusinska, Maria; Papadiamantis, Anastasios; Gheorghe, L. Cristiana; Reilly, Katie; Brun, Emilie; Ullah, Sami; Cambier, Sebastien; Serchi, Tommaso; Tamm, Kaido; Lorusso, Candida; Dondero, Francesco; Melagrakis, Evangelos; Fraz, Muhammad Moazam; Melagraki, Georgia; Lynch, Iseult; Afantitis, Antreas

The CompSafeNano project, a Research and Innovation Staff Exchange (RISE) project funded under the European Union's Horizon 2020 program, aims to advance the safety and innovation potential of nanomaterials (NMs) by integrating cutting-edge nanoinformatics, computational modelling, and predictive toxicology to enable design of safer NMs at the earliest stage of materials development. The project leverages Safe-by-Design (SbD) principles to ensure the development of inherently safer NMs, enhancing both regulatory compliance and international collaboration. By building on established nanoinformatics frameworks, such as those developed in the H2020-funded projects NanoSolveIT and NanoCommons, CompSafeNano addresses critical challenges in nanosafety through development and integration of innovative methodologies, including advanced in vitro models, in silico approaches including machine learning (ML) and artificial intelligence (AI)-driven predictive models and 1st-principles computational modelling of NMs properties, interactions and effects on living systems. Significant progress has been made in generating atomistic and quantum-mechanical descriptors for various NMs, evaluating their interactions with biological systems (from small molecules or metabolites, to proteins, cells, organisms, animals, humans and ecosystems), and in developing predictive models for NMs risk assessment. The CompSafeNano project has also focused on implementing and further standardising data reporting templates and enhancing data management practices, ensuring adherence to the FAIR (Findable, Accessible, Interoperable, Reusable) data principles. Despite challenges, such as limited regulatory acceptance of New Approach Methodologies (NAMs) currently, which has implications for predictive nanosafety assessment, CompSafeNano has successfully developed tools and models that are integral to the safety evaluation of NMs, and that enable the extensive datasets on NMs safety to be utilised for the re-design of NMs that are inherently safer, including through prediction of the acquired biomolecule coronas which provide the biological or environmental identities to NMs, promoting their sustainable use in diverse applications. Future efforts will concentrate on further refining these models, expanding the NanoPharos Database, and working with regulatory stakeholders thereby fostering the widespread adoption of SbD practices across the nanotechnology sector. CompSafeNano's integrative approach, multidisciplinary collaboration and extensive stakeholder engagement, position the project as a critical driver of innovation in NMs SbD methodologies and in the development and implementation of computational nanosafety.

Elsevier

2025

Exploring the Chemical Complexity and Sources of Airborne Fine Particulate Matter in East Asia by Nontarget Analysis and Multivariate Modeling

Froment, Jean Francois; Park, Jong-Uk; Kim, Sang-Woo; Cho, Yoonjin; Choi, Soobin; Seo, Young Hun; Baik, Seungyun; Lee, Ji Eun; Martin, Jonathan W.

The complex and dynamic nature of airborne fine particulate matter (PM2.5) has hindered understanding of its chemical composition, sources, and toxic effects. In the first steps of a larger study, here, we aimed to elucidate relationships between source regions, ambient conditions, and the chemical composition in water extracts of PM2.5 samples (n = 85) collected over 16 months at an observatory in the Yellow Sea. In each extract, we quantified elements and major ions and profiled the complex mixtures of organic compounds by nontarget mass spectrometry. More than 50,000 nontarget features were detected, and by consensus of in silico tools, we assigned a molecular formula to 13,907 features. Oxygenated compounds were most prominent, followed by mixed nitrogenated/oxygenated compounds, organic sulfates, and sulfonates. Spectral matching enabled identification or structural annotation of 43 substances, and a workflow involving SIRIUS and MS-DIAL software enabled annotation of 74 unknown per- and polyfluoroalkyl substances with primary source regions in China and the Korean Peninsula. Multivariate modeling revealed seasonal variations in chemistry, attributable to the combination of warmer temperatures and maritime source regions in summer and to cooler temperatures and source regions of China in winter.

2025

Sovereignty-Aware Intrusion Detection on Streaming Data: Automatic Machine Learning Pipeline and Semantic Reasoning

Chatterjee, Ayan; Gopalakrishnan, Sundar; Mondal, Ayan

Intrusion Detection Systems (IDS) are critical in safeguarding network infrastructures against malicious attacks. Traditional IDSs often struggle with knowledge representation, real-time detection, and accuracy, especially when dealing with high-throughput data. This paper proposes a novel IDS framework that leverages machine learning models, streaming data, and semantic knowledge representation to enhance intrusion detection accuracy and scalability. Additionally, the study incorporates the concept of Digital Sovereignty, ensuring that data control, security, and privacy are maintained according to national and regional regulations. The proposed system integrates Apache Kafka for real-time data processing, an automatic machine learning pipeline (e.g., Tree-based Pipeline Optimization Tool (TPOT)) for classifying network traffic, and OWL-based semantic reasoning for advanced threat detection. The proposed system, evaluated on NSL-KDD and CIC-IDS-2017 datasets, demonstrated qualitative outcomes such as local compliance, reduced data storage needs due to real-time processing, and improved adaptability to local data laws. Experimental results reveal significant improvements in detection accuracy, processing efficiency, and Sovereignty alignment.

Elsevier

2025

Methane in Svalbard (SvalGaSess)

Hodson, Andrew; Kleber, Gabrielle Emma; Platt, Stephen Matthew; Kalenitchenko, Dimitri Stanislas Desire; Hengsens, Geert; Irvine-Fynn, Tristram; Senger, Kim; Tveit, Alexander Tøsdal; Øvreås, Lise; ten Hietbrink, Sophie; Hollander, Jamie; Ammerlaan, Fenna; Damm, Ellen; Römer, Miriam; Fransson, Agneta; Chierici, Melissa; Delpech, Lisa-Marie; Pirk, Norbert; Sen, Arunima; Redecker, Kelly

Methane is a powerful greenhouse gas whose emission into the atmosphere from Arctic environments is increasing in response to climate change. At present, the increase in atmospheric methane concentrations recorded at Ny-Ålesund and globally threatens the Paris Agreement goal of limiting warming to 2 degrees, preferably 1.5 degrees, by increasing the need for abatements. However, our understanding of the physical, chemical and biological processes that control methane in the Arctic are strongly biased towards just a few lowland sites that are not at all like Svalbard and other similar mountainous, ice-covered regions. Svalbard can therefore be used to better understand these locations. Svalbard’s methane stocks include vast reserves of ancient, geogenic methane trapped beneath glaciers and permafrost. This methane supplements the younger, microbial methane mostly produced in waterlogged soils and wetlands during the summer and early winter. Knowledge about the production, removal and migration of these two methane sources in Svalbard’s complex landscapes and coastal environments has grown rapidly in recent years. However, the need to exploit this knowledge to produce reliable estimates of present-day and future emissions of methane from across the Svalbard landscape is now paramount. This is because understanding these quantities is absolutely necessary when we seek to define how society must adjust in order to better manage greenhouse gases in Earth’s atmosphere

2025

Nord Stream: Største enkeltutslepp av metan nokon gang

Platt, Stephen Matthew (interview subject); Gildestad, Bjørn Atle; Elster, Kristian (journalists)

2025

Development of PFAS-free coatings following a Safe and Sustainable by Design (SSbD) approach - the PROPLANET project

Longhin, Eleonora Marta; Murugadoss, Sivakumar; SenGupta, Tanima; El Yamani, Naouale; McFadden, Erin; Honza, Tatiana; Ma, Xiaoxiong; Brochmann, Solveig; Verbič, Anja; Stres, Blaž; Novak, Uroš; Likozar, Blaž; Hudecova, Alexandra Misci; Olsen, Ann-Karin Hardie; Seif, Johannes P.; Dusinska, Maria; Rundén-Pran, Elise

2025

Towards an integrated data-driven infrastructure (InfraNor)

Denkmann, Rudolf; Aas, Wenche; Pedersen, Åshild Ønvik; Berge, Jørgen; Storvold, Rune; Godøy, Øystein ; Isaksen, Kjetil; Fjæraa, Ann Mari; Gulbrandsen, Njål; Christiansen, Hanne H; Gallet, Jean-Charles; Mevold, Kjetil; Malnes, Eirik; Ravolainen, Virve; Schuler, Thomas; Tømmervik, Hans; Nilsen, Frank; Fer, Ilker; Sivertsen, Agnar Holten; Jawak, Shridhar Digambar; Lihavainen, Heikki

2025

Overview of methods for production of sterile salmonids, their applicability in aquaculture and possible implications to wild salmon populations and biodiversity in Norway

Hindar, Kjetil; Bodin, Johanna Eva; Dalen, Knut Tomas; Duale, Nur; Garseth, Åse Helen; Malmstrøm, Martin; Sipinen, Ville Erling; Thorstad, Eva Bonsak; Velle, Gaute; Berg, Paul Ragnar; Mo, Tor-Atle; Olesen, Ingrid; Olsen, Ann-Karin Hardie; Rimstad, Espen

VKM has assessed the positive and negative effects on biodiversity were sterile salmon to be used in Norwegian aquaculture. Triploidisation is assessed as the most effective method for sterilising fish, but it can affect the welfare and health of the fish.

Several other techniques for producing sterile salmon are being tested, but it is too early to determine whether they can be used in large-scale farming.

This is the key message in a knowledge summary VKM has prepared for the Norwegian Environment Agency.

Background
Escaped farmed salmon poses a major threat to wild salmon in Norway. hey can interbreed with wild salmon, genetically alter them, and make the populations less adaptable and more vulnerable to disease and environmental changes. A possible solution to the problem may be to use sterile salmon in farming.

To date, only triploidisation has been tested. Newly fertilised eggs are given a hydrostatic pressure shock, thereby retaining an extra set of chromosomes which render the fish sterile. This method is currently the only one tested on a large scale. Triploidisation is effective but can also pose health and welfare challenges to fish.

Methods
VKM has reviewed available scientific literature regarding methods that can be used to produce sterile salmon. VKM has assessed whether these methods work as well, or better, than triploidy and whether they are likely to have fewer negative effects on fish welfare. Assessments have also been made of whether farmed fish treated with other sterilisation methods pose a greater or lesser threat to wild salmon than traditional farmed salmon.

VKM has looked at the possibilities for further development of the triploidisation technique and has also assessed various methods currently being tested for producing sterile fish. Some of these are still at the laboratory-testing stage, while others are approaching trials with release into sea-pens. VKM has grouped the different methods based on whether they cause permanent changes in the genome (so-called "knock-out" of important genes) or whether the changes only result in temporary blocking or downregulation of gene expression (so-called "knock-down").

Results
VKM concludes that triploidisation remains the most effective method and that there are possibilities to further develop this methodology through targeted breeding and adjustments in how the fish are kept. These measures can potentially solve the challenges for fish health and welfare. Using pure triploid female lines can also reduce some of the other challenges by preventing spawning interactions in rivers and reducing disease transmission to wild salmon.

Alternative sterilisation methods, such as gene editing, vaccination, and temporary downregulation of proteins for gonad development using antisense oligomers and egg immersion, are promising but still under development.

VKM assesses that methods causing permanent changes in the genome of diploid fish have a higher inherent risk than methods that only affect gene expression.

Hope in egg-bathing
Perhaps the most promising technique for safe production of sterile salmon is to add synthetic oligonucleotides to the eggs at an early stage, thereby preventing germ cell development without causing any inheritable changes. Such oligonucleotides can be injected into the eggs or absorbed by the eggs through bathing (immersion) in a special solution.

"Especially the method involving targeted 'tools,' such as oligonucleotides that prevent germ cell development and can be added to the eggs in a water bath, seems promising," says Johanna Bodin, member of the Panel for Genetically Modified organisms and spokesperson for the report.

(...)

2025

From streets to seas: New greener ways to analyse urban snow pollution

Davie-Martin, Cleo Lisa; Håland, Alexander; Pedersen, Kristine B.; Normann, Anne Katrine Meinich

2025

Measurement Report: Changes in ammonia emissions since the 18th century in south-eastern Europe inferred from an Elbrus (Caucasus, Russia) ice-core record

Legrand, Michel; Vorobyev, Mstislav; Bokuchava, Daria; Kutuzov, Stanislav; Plach, Andreas; Stohl, Andreas; Khairedinova, Alexandra; Mikhalenko, Vladimir; Vinogradova, Maria; Eckhardt, Sabine; Preunkert, Susanne

Atmospheric ammonia (NH3) is a key transboundary air pollutant that contributes to the impacts of nitrogen and acidity on terrestrial ecosystems. Ammonia also contributes to the atmospheric aerosol that affects air quality. Emission inventories indicate that NH3 was predominantly emitted by agriculture over the 19th and 20th centuries but, up to now, these estimates have not been compared to long-term observations. To document past atmospheric NH3 pollution in south-eastern Europe, ammonium (NH) was analysed along an ice core extracted from Mount Elbrus in the Caucasus, Russia. The NH ice-core record indicates a 3.5-fold increase in concentrations between 1750 and 1990 CE. Remaining moderate prior to 1950 CE, the increase then accelerated to reach a maximum in 1989 CE. Comparison between ice-core trends and estimated past emissions using state-of-the-art atmospheric transport modelling of submicron-scale aerosols (FLEXPART (FLEXible PARTicle dispersion) model) indicates good agreement with the course of estimated NH3 emissions from south-eastern Europe since ∼ 1750 CE, with the main contributions from south European Russia, Türkiye, Georgia, and Ukraine. Examination of ice deposited prior to 1850 CE, when agricultural activities remained limited, suggests an NH ice concentration related to natural soil emissions representing ∼ 20 % of the 1980–2009 CE NH level, a level mainly related to current agricultural emissions that almost completely outweigh biogenic emissions from natural soil. These findings on historical NH3 emission trends represent a significant contribution to the understanding of ammonia emissions in Europe over the last 250 years.

2025

Metaller, PCB, PAH og dioksiner i mose i Sør-Varanger. Moseundersøkelser 2008, 2015 og 2020

Berglen, Tore Flatlandsmo; Uggerud, Hilde Thelle; Schlabach, Martin; Eckhardt, Sabine; Enge, Ellen Katrin; Bjørklund, Morten; Pfaffhuber, Katrine Aspmo; Aandahl, Tone R.; Fjelldal, Erling

I 2008 samlet Svanhovd Miljøsenter inn mose ved 11 lokaliteter i grenseområdene mot Russland som NILU analyserte for 11 metaller, PCB, PAH og dioksiner. Formålet var å undersøke om det var andre kilder til forurensning i grenseområdene enn gruvedrift og smelteverksindustri. Prøvetaking og analyse ble gjentatt av NILU i 2015 og 2020, men kun for 60 (2015) og 56 (2020) metaller. For spormetallene Ni, Cu, Co og As er det et klart mønster med forhøyede konsentrasjoner nedstrøms Nikel og Zapolyarnyj. Organiske miljøgifter viser lave konsentrasjoner.

NILU

2025

Dust in the arctic: a brief review of feedbacks and interactions between climate change, aeolian dust and ecosystems

Meinander, Outi; Uppstu, Andreas; Dagsson-Waldhauserova, Pavla; Zwaaftink, Christine Groot; Jørgensen, Christian Juncher; Baklanov, Alexander; Kristensson, Adam; Massling, Andreas; Sofiev, Mikhail

Climatic feedbacks and ecosystem impacts related to dust in the Arctic include direct radiative forcing (absorption and scattering), indirect radiative forcing (via clouds and cryosphere), semi-direct effects of dust on meteorological parameters, effects on atmospheric chemistry, as well as impacts on terrestrial, marine, freshwater, and cryospheric ecosystems. This review discusses our recent understanding on dust emissions and their long-range transport routes, deposition, and ecosystem effects in the Arctic. Furthermore, it demonstrates feedback mechanisms and interactions between climate change, atmospheric dust, and Arctic ecosystems.

Frontiers Media S.A.

2025

Forurensning gjorde folk dårligere til å tenke

Grythe, Henrik (interview subject); Spilde, Ingrid (journalist)

2025

Publication
Year
Category