Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 9883 publications. Showing page 394 of 396:

Publication  
Year  
Category

Indian Land Carbon Sink Estimated from Surface and GOSAT Observations

Nayagam, Lorna Raja; Maksyutov, Shamil; Janardanan, Rajesh; Oda, Tomohiro; Tiwari, Yogesh K.; Sreenivas, Gaddamidi; Datye, Amey; Jain, Chaithanya D.; Ratnam, Madineni Venkat; Sinha, Vinayak; Hakkim, Haseeb; Terao, Yukio; Naja, Manish; Ahmed, Md. Kawser; Mukai, Hitoshi; Zeng, Jiye; Kaiser, Johannes; Someya, Yu; Yoshida, Yukio

The carbon sink over land plays a key role in the mitigation of climate change by removing carbon dioxide (CO2) from the atmosphere. Accurately assessing the land sink capacity across regions should contribute to better future climate projections and help guide the mitigation of global emissions towards the Paris Agreement. This study estimates terrestrial CO2 fluxes over India using a high-resolution global inverse model that assimilates surface observations from the global observation network and the Indian subcontinent, airborne sampling from Brazil, and data from the Greenhouse gas Observing SATellite (GOSAT) satellite. The inverse model optimizes terrestrial biosphere fluxes and ocean-atmosphere CO2 exchanges independently, and it obtains CO2 fluxes over large land and ocean regions that are comparable to a multi-model estimate from a previous model intercomparison study. The sensitivity of optimized fluxes to the weights of the GOSAT satellite data and regional surface station data in the inverse calculations is also examined. It was found that the carbon sink over the South Asian region is reduced when the weight of the GOSAT data is reduced along with a stricter data filtering. Over India, our result shows a carbon sink of 0.040 ± 0.133 PgC yr−1 using both GOSAT and global surface data, while the sink increases to 0.147 ± 0.094 PgC yr−1 by adding data from the Indian subcontinent. This demonstrates that surface observations from the Indian subcontinent provide a significant additional constraint on the flux estimates, suggesting an increased sink over the region. Thus, this study highlights the importance of Indian sub-continental measurements in estimating the terrestrial CO2 fluxes over India. Additionally, the findings suggest that obtaining robust estimates solely using the GOSAT satellite data could be challenging since the GOSAT satellite data yield significantly varies over seasons, particularly with increased rain and cloud frequency.

MDPI

2025

Revisjon av indikatorer for tilstandsvurdering av miljø og økosystem i norske havområder — Gruppen for overvåking av de marine økosystemene

Skern-Mauritzen, Mette; Andersson, Ingvild; Arneberg, Per; Sanchez-Borque, Jorge; Christensen, Kai Håkon; Danielsen, Ida Kristin; Ersvik, Mihaela; Frantzen, Sylvia; Frie, Anne Kirstine Højholt; Frigstad, Helene; Grøsvik, Bjørn Einar; Gundersen, Kjell; Hanssen, Sveinn Are; Heimstad, Eldbjørg Sofie; Husa, Vivian; Jensen, Henning; Jensen, Louise Kiel; Johansson, Josefina; Johnsen, Hanne; Leiknes, Øystein; Lindeman, Ingunn Hoel; Lorentsen, Svein-Håkon; van der Meeren, Gro Ingleid; Moe, Øyvind Grøner; Mørk, Herdis Langøy; Nesse, Steinar; Anker-Nilsen, Tycho; Bohlin-Nizzetto, Pernilla; Nordgård, Ida Kessel; Pettersson, Lasse; Roland, Rune; Schøyen, Merete; Skjerdal, Hilde Kristin; Stene, Kristine Orset; Thorsnes, Terje; Vee, Ida; Wasbotten, Ingar

Havforskningsinstituttet

2025

New Approach Methods (NAMs) for genotoxicity assessment of nano- and advanced materials; Advantages and challenges

Gutleb, Arno; Murugadoss, Sivakumar; Stepnik, Maciej; SenGupta, Tanima; El Yamani, Naouale; Longhin, Eleonora Marta; Olsen, Ann-Karin Hardie; Wyrzykowska, Ewelina; Jagiello, Karolina; Judzinska, Beata; Cambier, Sebastien; Honza, Tatiana; McFadden, Erin; Shaposhnikov, Sergey; Puzyn, Tomasz; Serchi, Tommaso; Weber, Pamina; Arnesdotter, Emma; Skakalova, Vier; Jirsova, Katerina; Grudzinski, Ireneusz; Collins, Andrew; Rundén-Pran, Elise; Dusinska, Maria

Genotoxicity assessment is essential for ensuring chemical safety and mitigating risks to human health and the environment. Traditional methods, reliant on animal models, are time-consuming, costly, and raise ethical concerns. New Approach Methods (NAMs) offer innovative, cost-effective, and ethical alternatives, playing a pivotal role in both traditional and next-generation risk assessment (NGRA) by minimizing the need for animal testing, particularly in genotoxicity evaluations. However, the development of NAMs often overlooks the particular physicochemical properties of nanomaterials (NMs), which significantly influence their toxicological behaviour and can interfere with genotoxicity evaluation. This underscores an urgent need for the standardization and adaptation of NAMs to address nano- and advanced material-specific genotoxicity challenges. In this review, we summarize the challenges associated with genotoxicity testing of NMs and highlight the suitability of existing in vitro and in silico NAMs for NMs and advanced materials, enabling genotoxicity testing across various exposure routes and organ systems. Despite considerable progress, regulatory validation remains constrained by the absence of approved test guidelines and standardized protocols. To achieve regulatory acceptance, it is crucial to adapt NAMs to NM-specific exposure scenarios, refine test systems to better mimic human biology, develop tailored in vitro protocols, and ensure thorough characterisation of NMs both in pristine form and dispersed in culture medium. Collaborative efforts among scientists, regulators, industry, and advocacy groups are vital to improving the reliability and regulatory acceptance of NAMs. By addressing these challenges, NAMs have the potential to revolutionize genotoxicity risk assessment, advancing it towards a more sustainable, efficient and ethical framework.

2025

GFAS status

Kaiser, Johannes

2025

Inverse modelling of N2O fluxes over Europe: An EYE-CLIMA initiative

Krishnankutty, Nalini; Thompson, Rona Louise; Berchet, Antoine; Winiwarter, Wilfried; Henne, Stephan; Karstens, Ute

2025

A Nano Risk Governance Portal supporting risk governance of nanomaterials and nano-enabled products

Isigonis, Panagiotis; Bouman, Evert Alwin; Varsou, Dimitra-Danai; Jensen, Keld Astrup; Fransman, Wouter; Drobne, Damjana; Rollon, Blanca Pozuelo; Ballesteros, Arantxa; Rodriguez-LLopis, Isabel; Säämänen, Arto J.; Afantitis, Antreas

isk governance (RG) of nanomaterials (NMs) has been at the focus of the Horizon 2020 Programme of the European Union, through the funding of three research projects (Gov4Nano, NANORIGO, RISKGONE). The extensive collaboration of the three projects, in various scientific topics, aimed to enhance RG of NMs and provide a solid scientific basis for effective collaboration of the various types of stakeholders involved. In this paper the development of a digital Nano Risk Governance Portal (NRGP) and associated information technology (IT) infrastructure supporting the risk governance of (engineered) nanomaterials and nano-enabled products, is presented, alongside considerations for future work and enhancement within the domain of Advanced Materials (AdMa). This paper describes several elements of this digital portal, which serves as a single-entry point for all stakeholders in need of, or interested in, nano-risk governance aspects. In its simplest form, the NRGP allows users to be efficiently guided towards tailored information about nanomaterials, risk governance concepts, guidance documents, harmonized methods for risk assessment, publicly accessible data, information and knowledge, as well as a directory of tools, to assess the exposure and hazard of nanomaterials and perform Safe-and-Sustainable-by-Design (SSbD) assessment in the context of nano-risk governance. This paper presents the technical implementation and the content of the first version of the NRGP alongside the vision for the future and further plans for development, implementation, hosting and maintenance of the NRGP aimed at ensuring its sustainability. This includes a procedure to link to, or include, currently available and future (nano)material-related (cloud) platforms, decision support systems, tools, guidance, and databases in line with good governance objectives.

Elsevier

2025

Lanternfish as bioindicator of microplastics in the deep sea: A spatiotemporal analysis using museum specimens

Ferreira, Guilherme V.B.; Justino, Anne K.S.; Martins, Júlia R.; Eduardo, Leandro Nolé; Schmidt, Natascha; Albignac, Magali; Braga, Adriana C.; Costa, Paulo A. S.; Fischer, Luciano Gomes; ter Halle, Alexandra; Bertrand, Arnaud; Lucena-Fredou, Flavia; Mincarone, Michael M.

Elsevier

2025

Narodila sa v Bangladéši, vyštudovala na Slovensku, v Nórsku robí svetovú vedu

Hudecova, Alexandra Misci (interview subject); Barát, Andrej (journalist)

2025

Biomass burning emission analysis based on MODIS aerosol optical depth and AeroCom multi-model simulations: Implications for model constraints and emission inventories

Petrenko, Mariya; Kahn, Ralph; Chin, Mian; Bauer, Susanne; Bergman, Tommi; Bian, Huisheng; Curci, Gabriele; Johnson, Ben; Kaiser, Johannes; Kipling, Zak; Kokkola, Harri; Liu, Xiaohong; Mezuman, Keren; Mielonen, Tero; Myhre, Gunnar; Pan, Xiaohua; Protonotariou, Anna; Remy, Samuel; Skeie, Ragnhild Bieltvedt; Stier, Philip; Toshihiko, Takemura; Tsigaridis, Kostas; Wang, Hailong; Watson-Parris, Duncan; Zhang, Kai

We assessed the biomass burning (BB) smoke aerosol optical depth (AOD) simulations of 11 global models that participated in the AeroCom phase III BB emission experiment. By comparing multi-model simulations and satellite observations in the vicinity of fires over 13 regions globally, we (1) assess model-simulated BB AOD performance as an indication of smoke source–strength, (2) identify regions where the common emission dataset used by the models might underestimate or overestimate smoke sources, and (3) assess model diversity and identify underlying causes as much as possible. Using satellite-derived AOD snapshots to constrain source strength works best where BB smoke from active sources dominates background non-BB aerosol, such as in boreal forest regions and over South America and southern hemispheric Africa. The comparison is inconclusive where the total AOD is low, as in many agricultural burning areas, and where the background is high, such as parts of India and China. Many inter-model BB AOD differences can be traced to differences in values for the mass ratio of organic aerosol to organic carbon, the BB aerosol mass extinction efficiency, and the aerosol loss rate from each model. The results point to a need for increased numbers of available BB cases for study in some regions and especially to a need for more extensive regional-to-global-scale measurements of aerosol loss rates and of detailed particle microphysical and optical properties; this would both better constrain models and help distinguish BB from other aerosol types in satellite retrievals. More generally, there is the need for additional efforts at constraining aerosol source strength and other model attributes with multi-platform observations.

2025

Målinger av SO2 i omgivelsene til Elkem Carbon. Kalenderår 2024

Hak, Claudia; Barrault, Sébastien Oftedal; Andresen, Erik

På oppdrag fra Elkem Carbon AS har NILU utført målinger av SO2 i omgivelsene til Elkem Carbon i Kristiansand. Målingene ble utført med SO2-monitor i boligområdet på Fiskåtangen (Konsul Wilds vei). I tillegg ble SO2 målt med passive prøvetakere ved 3 steder rundt bedriften. Rapporten dekker målinger i perioden 1. januar – 31. desember 2024. Norske grenseverdier for luftkvalitet (SO2) ble overholdt ved Konsul Wilds vei for alle midlingsperioder (årsmiddel, vintermiddel, døgnmiddel og timemiddel). To døgnmiddelverdier var over nedre vurderingsterskel (50 µg/m3). Passive luftprøver viste at Fiskåveien, rett sør for bedriften, var det mest belastede stedet i måleperioden.

NILU

2025

MDG ut mot regjeringens sommel med å forby kreftfremkallende stoffer

Heimstad, Eldbjørg Sofie (interview subject); Wold, Gry Catinka (journalist)

2025

Microplastic pellets in Arctic marine sediments: a common source or a common process?

Collard, France; Hallanger, Ingeborg G.; Philipp, Carolin; Herzke, Dorte; Schmidt, Natascha; Hotvedt, Ådne; Galtung, Kristin; Rydningen, Tom Arne; Litti, Lucio; Gentili, Giulia; Husum, Katrine

Elsevier

2025

UV-stråling

Fjæraa, Ann Mari (interview subject); Sire, Jonas Ørbeck (journalist)

2025

Datarapport: Analyse av gadolinium, Komp-540, ioheksol, jod og acetat i miljøprøver. DNV-prosjekt: Overvåking utenfor Ramslandsvågen 2024

Pfaffhuber, Katrine Aspmo; Skaar, Jøran Solnes; Davanger, Kirsten; Rostkowski, Pawel; Gundersen, Hans; Vadset, Marit; Bjørneby, Stine Marie

NILU

2025

Overview of GeoMIP for CMIP7

Muri, Helene Østlie

2025

Modelling the influence of suburban sprawl vs. compact city development upon road network performance and traffic emissions

Drabicki, Arkadiusz; Grythe, Henrik; Lopez-Aparicio, Susana; Górska, Lidia; Gzylo, Cyryl; Pyzik, Michal

Road traffic externalities are an important consequence of land-use and transport interactions and may be especially induced by their inefficient combinations. In this study, we integrate land-use, transport and emission modelling tools (the LUTEm framework) to assess how suburban expansion vs. inward densification scenarios influence journey parameters, road network performance and traffic emissions. Case-study simulations for Warsaw (Poland) underscore the negative consequences of suburban sprawl development, which are hardly mitigated by additional land-use or transport interventions, such as rebalancing of population-workplace distribution or road capacity reductions. On the other side, compact city development lowers global traffic congestion and emissions, but can also raise the risks of traffic externalities in central city area unless complemented with further interventions such as improved public transport attractiveness. This study aims to enrich the understanding of how integrating the land-use development and transport interventions can ultimately influence travel parameters and reduce urban road traffic externalities.

Elsevier

2025

CE-RISE: Enabling Circularity Through Digital Product Passports and Open Data Systems

Las Heras Hernandez, Miguel; Boero, Riccardo; Guerreiro, Cristina

2025

Burning of woody debris dominates fire emissions in the Amazon and Cerrado

Forkel, Matthias; Wessollek, Christine; Huijnen, Vincent; Andela, Niels; de Laat, Adrianus; Kinalczyk, Daniel; Marrs, Christopher; van Wees, Dave; Bastos, Ana; Ciais, Philippe; Fawcett, Dominic; Kaiser, Johannes; Klauberg, Carine; Kutchartt, Erico; Leite, Rodrigo V.; Li, Wei; Silva, Carlos; Sitch, Stephen; De Souza, Jefferson Goncalves; Zaehle, Sönke; Plummer, Stephen

2025

Critical review of the atmospheric composition observing capabilities for monitoring and forecasting

Eckman, Richard S.; Tanimoto, Hiroshi; Petropavlovskikh, Irina; Simpson, Isobel; Kazadzis, Stelios; Tørseth, Kjetil; Oda, Tomohiro; Lambert, Jean-Christopher; Houweling, Sander; Lakkala, Kaisa; Geddes, Jeffrey; Walker, John; Cooper, Owen R.; Van Weele, Michiel; Moreno, Sergi; Dulguerov, Leilani; Cui, Yuyan; Tarasova, Oksana; Turnbull, John; Thompson, Rona Louise; Zhou, Lihang

WMO

2025

Climate change rivals fertilizer use in driving soil nitrous oxide emissions in the northern high latitudes: Insights from terrestrial biosphere models

Pan, Naiqing; Tian, Hanqin; Shi, Hao; Pan, Shufen; Canadell, Josep G.; Chang, Jinfeng; Ciais, Philippe; Davidson, Eric A.; Hugelius, Gustaf; Ito, Akihiko; Jackson, Robert B.; Joos, Fortunat; Lienert, Sebastian; Millet, Dylan B.; Olin, Stefan; Patra, Prabir K.; Thompson, Rona Louise; Vuichard, Nicolas; Wells, Kelley C.; Wilson, Chris; You, Yongfa; Zaehle, Sönke

Nitrous oxide (N2O) is the most important stratospheric ozone-depleting agent based on current emissions and the third largest contributor to increased net radiative forcing. Increases in atmospheric N2O have been attributed primarily to enhanced soil N2O emissions. Critically, contributions from soils in the Northern High Latitudes (NHL, >50°N) remain poorly quantified despite their exposure to rapid rates of regional warming and changing hydrology due to climate change. In this study, we used an ensemble of six process-based terrestrial biosphere models (TBMs) from the Global Nitrogen/Nitrous Oxide Model Intercomparison Project (NMIP) to quantify soil N2​O emissions across the NHL during 1861–2016. Factorial simulations were conducted to disentangle the contributions of key driving factors, including climate change, nitrogen inputs, land use change, and rising atmospheric CO2 concentration​, to the trends in emissions. The NMIP models suggests NHL soil N2O emissions doubled from 1861 to 2016, increasing on average by 2.0 ± 1.0 Gg N/yr (p

Elsevier

2025

Publication
Year
Category