Found 10021 publications. Showing page 395 of 401:
Australia has significant sources of atmospheric methane (CH₄), driven by extensive coal and natural gas production, livestock, and large-scale fires. Accurate quantification and characterization of CH₄ emissions are critical for effective climate mitigation strategies in Australia. In this study, we employed an inverse analysis of atmospheric CH₄ observations from the GOSAT satellite and surface measurements from 2016 to 2021 to assess CH₄ emissions in Australia. The inversion process integrates anthropogenic and natural emissions as prior estimates, optimizing them with the NIES-TM-FLEXPART-variational model (NTFVAR) at a resolution of up to 0.1° × 0.1°. We validated the performance of our inverse model using data obtained from the United Nations Environment Program Methane Science (UNEP), Airborne Research Australia 2018 aircraft-based atmospheric CH₄ measurement campaigns. Compared to prior emission estimates, optimized emissions dramatically enhanced the accuracy of modeled concentrations, aligning them much better with observations. Our results indicate that the estimated inland CH4 emissions in Australia amount to 6.84 ± 0.51 Tg CH4 yr−1 and anthropogenic emissions amount to 4.20 ± 0.08 Tg CH4 yr−1, both slightly lower than the values reported in existing inventories. Moreover, our results unveil noteworthy spatiotemporal characteristics, such as upward corrections during the warm season, particularly in Southeastern Australia. During the three most severe months of the 2019–2020 bushfire season, emissions from biomass burning surged by 0.68 Tg, constituting over 71% of the total emission increase. These results highlight the importance of continuous observation and analysis of sectoral emissions, particularly near major sources, to guide targeted emission reduction strategies. The spatiotemporal characteristics identified in this study underscore the need for adaptive and region-specific approaches to CH₄ emission management in Australia.
2025
Anthropogenic compounds in the northernmost Atlantic puffin population
Contamination by organic pollutants, even in remote regions, poses a growing threat to wildlife, including seabirds. However, for many seabirds breeding at high latitudes, both the extent and nature of contaminant exposure remain largely unknown. This study aimed to identify the persistent organic pollutants (POPs) present in the Svalbard Atlantic puffin Fratercula arctica at the northern limit of its range. We also compare contaminant concentrations with those found in other species breeding on Svalbard and in puffin colonies further south. The Svalbard puffins were found to be contaminated by organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and per- and polyfluoroalkyl substances (PFAS). No significant sex difference was found. OCPs, PCBs and/or PFASs concentrations in Svalbard puffins were comparable to those of Brünnich's guillemots Uria lomvia, black guillemots Cepphus grylle, and/or little auks Alle alle, but lower than in glaucous gulls Larus hyperboreus. PFAS concentrations were also lower than in black-legged kittiwakes Rissa tridactyla. OCP and PCB concentrations were lower on Svalbard than in puffin colonies further south. This study is the first to document PFAS concentrations in puffins, therefore it remains unknown whether PFAS levels were also lower on Svalbard than further south. These comparisons should be interpreted with caution, as data for different species or colonies were collected in different years, and contaminant levels vary over time. The current contaminant concentrations indicate that Svalbard puffins are still at low risk for biological effects, but continued monitoring is needed to assess potential future changes.
2025
Environmental Contaminants in an Urban Fjord, 2024 – Emphasis on Alna River
This report presents data from the fourth year of a 5-year period of the Urban Fjord
programme. The programme started in 2013 and has since been altered/advanced.
In 2024 the programme covers sampling and analyses of water, water moss,
invertebrates, and trout from Alna River, as well as stormwater from Eastern Oslo
City. A sampling campaign was also conducted for source tracing of chlorhexidine,
dichloromethane and trichloromethane previously found in Alna River. A total of
240 single compounds/isomers were analyzed, and frequent detection was found
of specifc PFAS compounds in aqueous phases, other specifc PFAS compounds in
trout liver, UV-compounds and certain QACs in the particulate fraction of
stormwater, certain benzothiazoles in stormwater (dissolved and/or particulate
fraction) , chlorinated paraffns (MCCP and LCCP) in biota, certain siloxanes in
nearly all matrices, metals in all matrices, and PCBs in biota. Biomagnifcation was
only observed for a couple of the PCB congeners. However, as expected,
biomagnifcation was observed for mercury and PFOS. Biomagnifcation of silver
was observed when trout was represented by liver samples, but not muscle samples.
The source tracing showed the presence of the compounds at several stations
Norsk institutt for vannforskning (NIVA)
2025
Denne rapporten beskriver en studie utført av NILU for Nordre Follo kommune, med støtte fra Folkehelseinstituttet. Målet var å prøve uhildet kartlegging som metode for å undersøke hvilke organisk-kjemiske forbindelser som finnes i nedbørfeltet til drikkevannskilden Gjersjøen. Som del av dette ønsket vi også å identifisere forbindelser som forårsaker feilaktige, store utslag i nitratsensorer. Ved bruk av høyoppløselig massespektrometri og miljøforensiske metoder ble 163 markører identifisert, inkludert aspirin, kreatin og kreatinin, knyttet til kloakkforurensning under kraftig nedbør. Funnene gir innsikt i kjemisk interferens og kan forbedre overvåkingssystemer og vannforvaltning.
NILU
2025
Atmospheric ammonia (NH3) is a key transboundary air pollutant that contributes to the impacts of nitrogen and acidity on terrestrial ecosystems. Ammonia also contributes to the atmospheric aerosol that affects air quality. Emission inventories indicate that NH3 was predominantly emitted by agriculture over the 19th and 20th centuries but, up to now, these estimates have not been compared to long-term observations. To document past atmospheric NH3 pollution in south-eastern Europe, ammonium (NH) was analysed along an ice core extracted from Mount Elbrus in the Caucasus, Russia. The NH ice-core record indicates a 3.5-fold increase in concentrations between 1750 and 1990 CE. Remaining moderate prior to 1950 CE, the increase then accelerated to reach a maximum in 1989 CE. Comparison between ice-core trends and estimated past emissions using state-of-the-art atmospheric transport modelling of submicron-scale aerosols (FLEXPART (FLEXible PARTicle dispersion) model) indicates good agreement with the course of estimated NH3 emissions from south-eastern Europe since ∼ 1750 CE, with the main contributions from south European Russia, Türkiye, Georgia, and Ukraine. Examination of ice deposited prior to 1850 CE, when agricultural activities remained limited, suggests an NH ice concentration related to natural soil emissions representing ∼ 20 % of the 1980–2009 CE NH level, a level mainly related to current agricultural emissions that almost completely outweigh biogenic emissions from natural soil. These findings on historical NH3 emission trends represent a significant contribution to the understanding of ammonia emissions in Europe over the last 250 years.
2025
Metaller, PCB, PAH og dioksiner i mose i Sør-Varanger. Moseundersøkelser 2008, 2015 og 2020
I 2008 samlet Svanhovd Miljøsenter inn mose ved 11 lokaliteter i grenseområdene mot Russland som NILU analyserte for 11 metaller, PCB, PAH og dioksiner. Formålet var å undersøke om det var andre kilder til forurensning i grenseområdene enn gruvedrift og smelteverksindustri. Prøvetaking og analyse ble gjentatt av NILU i 2015 og 2020, men kun for 60 (2015) og 56 (2020) metaller. For spormetallene Ni, Cu, Co og As er det et klart mønster med forhøyede konsentrasjoner nedstrøms Nikel og Zapolyarnyj. Organiske miljøgifter viser lave konsentrasjoner.
NILU
2025
Climatic feedbacks and ecosystem impacts related to dust in the Arctic include direct radiative forcing (absorption and scattering), indirect radiative forcing (via clouds and cryosphere), semi-direct effects of dust on meteorological parameters, effects on atmospheric chemistry, as well as impacts on terrestrial, marine, freshwater, and cryospheric ecosystems. This review discusses our recent understanding on dust emissions and their long-range transport routes, deposition, and ecosystem effects in the Arctic. Furthermore, it demonstrates feedback mechanisms and interactions between climate change, atmospheric dust, and Arctic ecosystems.
2025
Seminar focused on health inequality arranged by the project Healthy Choices and the Social gradient.
2025
2025
More than 70 years of industrial production of per- and polyfluoroalkyl substances (PFAS) have resulted in their ubiquitous presence in the environment on a global scale, although differences in sources, transport and fate lead to variability of occurrence in the environment. Gull eggs are excellent bioindicators of environmental pollution, especially for persistent organic pollutants such as PFAS, known to bioaccumulate in organisms and to be deposited in bird eggs by maternal transfer. Using yellow-legged gull (Larus michahellis) eggs, we investigated the occurrence of more than 30 PFAS, including the most common chemicals (i.e., legacy PFAS) as well as their alternatives (i.e., emerging PFAS) in the Bay of Marseille, the second largest city in France. Compared to eggs from other colonies along the Mediterranean coast, those from Marseille had PFAS concentrations ranging from slightly higher to up to four times lower, suggesting that this area cannot be specifically identified as a hotspot for these compounds. We also found several emerging PFAS including 8:2 and 10:2 FTS, 7:3 FTCA or PFECHS in all collected eggs. Although the scarcity in toxicity thresholds for seabirds, especially during embryogenesis, does not enable any precise statement about the risks faced by this population, this study contributes to the effort in documenting legacy PFAS contamination on Mediterranean coasts while providing valuable novel inputs on PFAS of emerging concern. Identifying exposure in free-ranging species also participate to determine the main target for toxicity testing in wildlife.
2025
2025
This study builds upon the findings of a FAIRMODE intercomparison exercise conducted in a district of Antwerp, Belgium, where a comprehensive dataset of air pollutant measurements (air quality stations and passive samplers) was available. Long-term average NO2 concentrations at very high spatial resolution were estimated by several dispersion modelling systems (Martín et al., 2024) to investigate the ability of these to capture the detailed spatial distribution of NO2 concentrations at the microscale in urban environments. In this follow-up research, we extend the analysis by evaluating the capability of these modelling systems to predict the NO2 annual limit value exceedance areas (LVEAs) and spatial representativeness areas (SRAs) for NO₂ at two reference air quality stations. The different modelling approaches used are based on CFD, Lagrangian, Gaussian, and AI-driven models.
The different modelling approaches are generally good at predicting the LVEA and SRAs of urban air quality stations, although a small SRA (corresponding to low concentration tolerances or the traffic station) is more difficult to predict correctly. However, there are notable differences in performance among the modelling systems. Those based on CFD models seem to provide more consistent results predicting LVEAs and SRAs. Then, lower accuracy is obtained with AI-based systems, Lagrangian models, and Gaussian models with street canyon parameterizations. The Gaussian models with street-canyon parametrizations show significantly better results than models using simply a Gaussian dispersion parametrization.
Furthermore, little differences are observed in most of the statistical indicators corresponding to the LVEA and SRA estimates obtained from the unsteady full month CFD simulations compared to those from the scenario-based CFD simulation methodologies, but there are some noticeable differences in the LVEA or SRA (traffic station, 10 % tolerance) sizes. The number of scenarios does not seem to be relevant to the results. Different bias correction methodologies are explored.
2025
Tiltaksutredning for lokal luftkvalitet i Bærum 2025-2030
Stiftelsen NILU har, i samarbeid med Transportanalyse AS, utarbeidet trafikk- og luftkvalitetsberegninger for Oslo og Bærum kommuner. Arbeidet omfatter en kartlegging av luftkvaliteten ved trafikkberegninger og utslipps- og spredningsberegninger for relevante forurensningskomponenter (PM10, PM2,5 og NO2) for Dagens situasjon 2022, Referansesituasjonen 2030 og for 2030 med tiltak. Det er beregnet risiko for overskridelse av dagens grenseverdier i forurensningsforskriften og for grenseverdier i revidert EU-direktiv som vil innføres fullt fra 2030.
NILU
2025
2025
Remote marine areas of the Arctic have become a sink for pollutants like Persistent Organic Pollutants (POPs), transported long distances from southern latitudes. This presence of contaminants is creating pressure on Arctic organisms. As such, Svalbard´s wildlife has been monitored for decades to follow temporal trends of pollutants, in addition to better understanding the effects of pollutants on Arctic wildlife.
Seabirds are a key group of Arctic animals that are particularly sensitive to the pollutants’ toxicity via effects on behavior, demography and long-term population viability. Understanding how pollutants affect population viability is essential to protect Arctic wildlife but has been an understudied topic in marine ecology.
Two populations of female common eider (Somateria mollissima) have been monitored in Kongsfjorden (Svalbard) and Grindøya (Troms) since 2007 and 1984, respectively. Concentrations of POPs have been analyzed in eiders blood samples, between 2007 and 2009 for Kongsfjorden and from 2005 to 2009 for Grindøya. Previous studies found higher concentrations of HCB (Hexachlorobenzene) for common eiders breeding in Kongsfjorden, while it is the concentrations of PCB (polychlorinated bipheyls) that are the highest for the common eiders breeding in Grindøya. Additionally, the adult survival is higher Kongsfjorden compared to Grindøya common eiders. However, the interaction between those different concentrations of POPs and the adult survival of those two populations have not been studied yet.
Here, we will investigate whether POPs may affect adult survival of female common eiders breeding both in Kongsfjorden and Grindøya. If the POP levels are sufficiently high to induce health effects, we predict that higher concentrations of POPs will negatively affect adult survival.
2025
2025