Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 9989 publications. Showing page 52 of 400:

Publication  
Year  
Category

The Air4EU mapping tool. Poster presentation. NILU PP

Dudek, A.V.; Logna, R.; Denby, B.

2006

The air we breathed; the climatology of a 12, 000 kilometre cruise through the North Atlantic.

Burkhart, J.F.; Quinn, P.; Bates, T.; Coffman, D.; Williams, E.J.; Stohl, A.

2008

The air quality monitoring and management system for HCMC, Vietnam. NILU F

Sivertsen, B.; Thanh, T.N.; Le, V.K.; Vo, T.D.

2004

The Air Quality Management System AirQUIS.

Slørdal, L.H.; Mc Innes, H.; Krognes, T.

2007

The Air Quality Information System AirQUIS.

Slørdal, L.H.; Mc Innes, H.; Krognes, T.

2008

The air pollution monitoring network for Egypt. NILU PP

Sivertsen, B.; El Seoud, A.A.

2004

The added value of a visible channel to a geostationary thermal infrared instrument to monitor ozone for air quality.

Hache, E.; Attié, J.-L.; Tourneur, C.; Ricaud, P.; Coret, L.; Lahoz, W. A.; El Amraoui, L.; Josse, B.; Hamer, P.; Warner, J.; Liu, X.; Chance, K.; Höpfner, M.; Spurr, R.; Natraj, V.; Kulawik, S.; Eldering, A.; Orphal, J.

2014

The active layer soils of Greenlandic permafrost areas can function as important sinks for volatile organic compounds

Jiao, Yi; Kramshøj, Magnus; Davie-Martin, Cleo Lisa; Elberling, Bo; Rinnan, Riikka

Permafrost is a considerable carbon reservoir harboring up to 1700 petagrams of carbon accumulated over millennia, which can be mobilized as permafrost thaws under global warming. Recent studies have highlighted that a fraction of this carbon can be transformed to atmospheric volatile organic compounds, which can affect the atmospheric oxidizing capacity and contribute to the formation of secondary organic aerosols. In this study, active layer soils from the seasonally unfrozen layer above the permafrost were collected from two distinct locations of the Greenlandic permafrost and incubated to explore their roles in the soil-atmosphere exchange of volatile organic compounds. Results show that these soils can actively function as sinks of these compounds, despite their different physiochemical properties. Upper active layer possessed relatively higher uptake capacities; factors including soil moisture, organic matter, and microbial biomass carbon were identified as the main factors correlating with the uptake rates. Additionally, uptake coefficients for several compounds were calculated for their potential use in future model development. Correlation analysis and the varying coefficients indicate that the sink was likely biotic. The development of a deeper active layer under climate change may enhance the sink capacity and reduce the net emissions of volatile organic compounds from permafrost thaw.

2025

The 5-years assessment of air quality, the Norwegian experience. NILU OR

Guerreiro, C.; Bøhler, T.

This report describes the Norwegian experience and "best practices" regarding the approach to classify zones and agglomerations in relation to the upper and lower assessment thresholds, as required in Article 5 of Directive 2008/50/ EC and Article 4 of Directive 2004/107/ EC. It is based on the recent air quality assessments done in Norway and gives a brief overview over the available relevant information and methods NILU would consider in such an assessment. A short description of Norway's assessment zones and agglomerations and monitoring networks is also provided.

2013

The 2010 Eyjafjallajökull eruption: Estimations of volcanic ash release and transport modelling using different models.

Kristiansen, N.I.; Stohl, A.; Prata, F.; Eckhardt, S.; Webster, H.; Hort, M.; Thomson, D.; Henne, S.; Seibert, P.

2011

The 2010 explosive eruption of Java's Merapi volcano - a '100-year' event.

Surono, Jousset, P.; Pallister, J.; Boichu, M.; Buongiorno, M.F.; Budisantoso, A.; Costa, F.; Andreastuti, S.; Prata, F.; Schneider, D.; Clarisse, L.; Humaida, H.; Sumarti, S.; Bignami, C.; Griswold, J.; Carn, S.; Oppenheimer, C.

2012

The 11 year solar cycle UV irradiance effect and its dependency on the Pacific Decadal Oscillation

Guttu, Sigmund; Orsolini, Yvan J.; Stordal, Frode; Otterå, Odd Helge; Omrani, Nour-Eddine

The stratospheric, tropospheric and surface impacts from the 11 year ultraviolet solar spectral irradiance (SSI) variability have been extensively studied using climate models and observations. Here, we demonstrate using idealized model simulations that the Pacific Decadal Oscillation (PDO), which has been shown to impact the tropospheric and stratospheric circulation from sub-decadal to multi-decadal timescales, strongly modulates the solar-induced atmospheric response. To this end, we use a high-top version of the coupled ocean–atmosphere Norwegian Climate Prediction Model forced by the SSI dataset recommended for Coupled Model Intercomparison Project 6. We perform a 24-member ensemble experiment over the solar cycle 23 in an idealized framework. To assess the PDO modulation of the solar signal, we divide the model data into the two PDO phases, PDO+ and PDO−, for each solar (maximum or minimum) phase. By compositing and combining the four categories, we hence determine the component of the solar signal that is independent of the PDO and the modulation of the solar signal by the PDO, along with the solar signal in each PDO phase. Reciprocally, we determine the PDO effect in each solar phase. Our results show that the intensification of the polar vortex under solar maximum is much stronger in the PDO− phase. This signal is transferred into the troposphere, where we find a correspondingly stronger polar jet and weaker Aleutian Low. We further show that the amplification of the solar signal by the PDO− phase is driven by anomalous meridional advection of solar-induced temperature anomalies over northern North America and the North Pacific, which contributes to a decreased meridional eddy heat flux and hence to a decreased vertical planetary wave flux into the stratosphere.

2021

The 11 year solar cycle UV irradiance effect and its dependency on the Pacific Decadal Oscillation

Guttu, Sigmund; Orsolini, Yvan J.; Stordal, Frode; Otterå, Odd Helge; Omrani, Nour-Eddine

2021

The 11 year solar cycle UV irradiance effect and its dependency on the Pacific Decadal Oscillation

Orsolini, Yvan J.; Guttu, Sigmund; Stordal, Frode; Otterå, Odd Helge; Omrani, Nour-Eddine

2022

The 11 year solar cycle UV irradiance effect and its dependency on the Pacific Decadal Oscillation

Orsolini, Yvan J.; Guttu, Sigmund; Stordal, Frode; Otterå, Odd Helge; Omrani, Nour-Eddine

2022

Publication
Year
Category