Found 9759 publications. Showing page 107 of 391:
2010
2006
2009
2009
PM2.5 Retrieval Using Aerosol Optical Depth, Meteorological Variables, and Artificial Intelligence
Particulate matter (PM) is one of the major air pollutants that has adverse impacts on human health. The aim of this study is to present an alternative approach for retrieving fine PM (particles with an aerodynamic diameter less than 2.5 μm, PM2.5) using artificial intelligence. Ground-based instruments, including a hand-held Microtops II sun photometer (for aerosol optical depth), a PurpleAir sensor (for PM2.5), and Rotronic sensors (for temperature and relative humidity), are used for the machine learning algorithm training. The retrieved PM2.5 reveals an adequate performance with an error of 0.08 μg m−3 and a Pearson correlation coefficient of 0.84.
2023
PM10/PM2.5 comparison exercise in Oslo, Norway. Study in 2015-2016 and 2018.
Formålet med sammenligningen var å ekvivalensteste og etablere kalibreringsfaktorer for de vanligste automatiske PM-målere som er i bruk i Norge. For å etablere faktorene utførte Referanselaboratoriet en feltstudie på tre steder i Oslo under sommer- og vinterforhold i periodene september 2015 til juli 2016 og februar til mars 2018. Måleinstrumentene som deltok var Palas Fidas 200, Grimm EDM 180, TEI TEOM 1405 DF, TEI FH 62 I-R, og R&P TEOM 1400AB.
Rapporten beskriver et mulig system for kontinuerlig verifikasjon av kalibreringsfaktorene i de norske målenettene og hvordan analysedata skal kalibreres.
NILU
2021
2014
2019
2000
NILU has carried out an investigation of contributions from small scale wood burning to PM concentrations in air in cities in Norway. In this project phase 2B the contributions to PM in Trondheim from small scale wood burning have been studied.
There were days with high PM concentrations in Trondheim that winter, up to and above 100 µg/m3 of PM10. On days with probable large contributions from wood burning particles, the PM2,5 and PM10 could be over 50 µg/m3 .
Due to analysis problems with the wood burning tracer component (an unexplained interference peak) the wood burning contribution could not be determined quantitatively.
2008
2015
2009
2017
Plastic pollution (including microplastics) has been reported in a variety of biotic and abiotic compartments across the circumpolar Arctic. Due to their environmental ubiquity, there is a need to understand not only the fate and transport of physical plastic particles, but also the fate and transport of additive chemicals associated with plastic pollution. Further, there is a fundamental research gap in understanding long-range transport of chemical additives to the Arctic via plastics as well as their behavior under environmentally relevant Arctic conditions. Here, we comment on the state of the science of plastic as carriers of chemical additives to the Arctic, and highlight research priorities going forward. We suggest further research on the transport pathways of chemical additives via plastics from both distant and local sources and laboratory experiments to investigate chemical behavior of plastic additives under Arctic conditions, including leaching, uptake, and bioaccumulation. Ultimately, chemical additives need to be included in strategic monitoring efforts to fully understand the contaminant burden of plastic pollution in Arctic ecosystems.
2023
2022