Found 9763 publications. Showing page 115 of 391:
2010
2010
2010
2001
2013
Ny-Ålesund is an international research settlement where the thermodynamics and chemical composition of the air are monitored. The present work investigates the effects of micrometeorological conditions, mesoscale dynamics and local air pollution on the data collected at two different locations around the village. Daily filter measurements of sulphur dioxide and non-sea salt sulphate from the temporary Ny-Ålesund station and permanent Zeppelin mountain station have been analysed along with meteorological data. The influence of different factors representing micrometeorological phenomena and local pollution from ships has been statistically investigated. Seasonal variation of the correlation between the data from Ny-Ålesund and Zeppelin stations is revealed, and the seasonal dependence of the relative contribution of different factors has been analysed. The median concentrations of SO42- measured in Ny-Ålesund increased significantly on days with temperature inversions in winter. In spring, concentrations of SO2 and SO42- were higher than normal at both stations on days with temperature inversions, but lower on days with strong humidity inversions. In summer, local ship traffic affects the SO2 data set from Ny-Ålesund, while no statistically significant influence on the Zeppelin data set has been observed. The pollution from ships has an effect on SO42- values at both stations; however, the concentrations in Ny-Ålesund were higher when local pollution accumulated close to the ground in days with strong humidity inversions.
2018
2015
2024
2006
2016
2007
2012
2008
Effects of climate variability on vegetation and carbon uptake in a North-Norwegian coastal wetland. NILU OR
Greenhouse gas exchange between terrestrial ecosystems and the atmosphere are an important element of the climate system. Especially boreal and polar wetlands and peatlands may play a crucial role for the future development of atmospheric carbon dioxide and methane concentrations, because they contain stores of these gases in the same order of magnitude as the current atmospheric load. The aim of this project was to estimate the fluxes of CO2 and CH4 from an oceanic wetland in North-Norway. Seven years of observations reveal that carbon exchange from this ecosystem is comparable to that of moderate zone coastal wetlands, but distinctly different from alpine and continental wetlands at the same latitude in Sweden and Finland. The seven-year record of meteorological data reveals that the observed period was significantly warmer (especially during winter) and drier (especially in summer) than the climate reference period 1961-1990. Carbon fluxes during the growing season are sensitive to both draught, cold spells and soil climate conditions before the onset of the growing season, but the annual Net Ecosystem Exchange is much less variable.
2015
The effect of the 2018 extreme meteorological conditions in Europe on methane (CH4) emissions is examined using estimates from four atmospheric inversions calculated for the period 2005–2018. For most of Europe, we find no anomaly in 2018 compared to the 2005–2018 mean. However, we find a positive anomaly for the Netherlands in April, which coincided with positive temperature and soil moisture anomalies suggesting an increase in biogenic sources. We also find a negative anomaly for the Netherlands for September–October, which coincided with a negative anomaly in soil moisture, suggesting a decrease in soil sources. In addition, we find a positive anomaly for Serbia in spring, summer and autumn, which coincided with increases in temperature and soil moisture, again suggestive of changes in biogenic sources, and the annual emission for 2018 was 33 ± 38% higher than the 2005–2017 mean. These results indicate that CH4 emissions from areas where the natural source is thought to be relatively small can still vary due to meteorological conditions. At the European scale though, the degree of variability over 2005–2018 was small, and there was negligible impact on the annual CH4 emissions in 2018 despite the extreme meteorological conditions.
This article is part of a discussion meeting issue ‘Rising methane: is warming feeding warming? (part 2)’.
2021
2019
2019
2002
2009
Effects of increased biomass removal on the biogeochemistry of two Norwegian forest ecosystems. NILU PP
2009
2016
2007