Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 9763 publications. Showing page 117 of 391:

Publication  
Year  
Category

Ekspert: Slik blir vi skadet av UV-stråling når sola gløder

Svendby, Tove Marit (interview subject); Kristiansen, Martin Næss (journalist)

2024

Eksperter: Dette bør du ikke gjenbruke

Herzke, Dorte (interview subject); Eilertsen, Stine (journalist)

2024

El escarabajo verde - Ciudades

Castell, Nuria; Tarrasón, Leonor (interview subjects)

2019

Electrocatalytic performance of oxygen-activated carbon fibre felt anodes mediating degradation mechanism of acetaminophen in aqueous environments

Jakobczyk, Pawel; Skowierzak, Grzegorz; Kaczmarzyk, Iwona; Nadolska, Malgorzata; Wcislo, Anna; Lota, Katarzyna; Bogdanowicz, Robert; Ossowski, Tadeusz; Rostkowski, Pawel; Lota, Gregorz; Ryl, Jacek

Carbon felts are flexible and scalable, have high specific areas, and are highly conductive materials that fit the requirements for both anodes and cathodes in advanced electrocatalytic processes. Advanced oxidative modification processes (thermal, chemical, and plasma-chemical) were applied to carbon felt anodes to enhance their efficiency towards electro-oxidation. The modification of the porous anodes results in increased kinetics of acetaminophen degradation in aqueous environments. The utilised oxidation techniques deliver single-step, straightforward, eco-friendly, and stable physiochemical reformation of carbon felt surfaces. The modifications caused minor changes in both the specific surface area and total pore volume corresponding with the surface morphology.

A pristine carbon felt electrode was capable of decomposing up to 70% of the acetaminophen in a 240 min electrolysis process, while the oxygen-plasma treated electrode achieved a removal yield of 99.9% estimated utilising HPLC-UV-Vis. Here, the electro-induced incineration kinetics of acetaminophen resulted in a rate constant of 1.54 h−1, with the second-best result of 0.59 h−1 after oxidation in 30% H2O2. The kinetics of acetaminophen removal was synergistically studied by spectroscopic and electrochemical techniques, revealing various reaction pathways attributed to the formation of intermediate compounds such as p-aminophenol and others.

The enhancement of the electrochemical oxidation rates towards acetaminophen was attributed to the appearance of surface carbonyl species. Our results indicate that the best-performing plasma-chemical treated CFE follows a heterogeneous mechanism with only approx. 40% removal due to direct electro-oxidation. The degradation mechanism of acetaminophen at the treated carbon felt anodes was proposed based on the detected intermediate products. Estimation of the cost-effectiveness of removal processes, in terms of energy consumption, was also elaborated. Although the study was focussed on acetaminophen, the achieved results could be adapted to also process emerging, hazardous pollutant groups such as anti-inflammatory pharmaceuticals.

Pergamon Press

2022

Electrochemical Behaviour of Carbon Anodes Produced with Different Mixing Temperatures and Baking Levels—A Laboratory Study

Sommerseth, Camilla; Thorne, Rebecca Jayne; Gebarowski, Wojciech; Ratvik, Arne Petter; Rørvik, Stein; Linga, Hogne; Lossius, Lorentz Petter; Svensson, Ann Mari

2019

Electrochemical reactivity and wetting properties of anodes made from anisotropic and isotropic cokes.

Sommerseth, C.; Thorne, R.J.; Ratvik, A.P.; Sandnes, E.; Rørvik, S.; Lossius, L.P.; Linga, H.; Svensson, A.M.

2016

Elemental and organic carbon in PM10: A one year measurement campaign within the European Monitoring and Evaluation Programme EMEP.

Yttri, K. E.; Aas, W.; Bjerke, A.; Cape, J. N.; Cavalli, F.; Ceburnis, D.; Dye, C.; Emblico, L.; Facchini, M. C.; Forster, C.; Hanssen, J. E.; Hansson, H. C.; Jennings, S. G.; Maenhaut, W.; Putaud, J. P.; Tørseth, K.

2007

Elemental and organic carbon in PM10: A one year measurements campaign within the European monitoring and evaluation programme EMEP. NILU F

Yttri, K.E.; Aas, W.; Bjerke, A.; Ceburnis, D.; Dye, C.; Facchini, M.C.; Forster, C.; Hanssen, J.E.; Hansson, H.C.; Jennings, S.G.; Maenhaut, W.; Tørseth, K.

2006

Elemental and organic carbon in PM10: A one year measurements campaign within the European monitoring and evaluation programme EMEP.

Yttri, K.E.; Aas, W.; Bjerke, A.; Ceburnis, D.; Dye, C.; Facchini, M.C.; Forster, C.; Hanssen, J.E.; Hansson, H.C.; Jennings, S.G.; Maenhaut, W.; Tørseth, K.

2006

Elemental carbon in snow from Western Siberia and Northwestern European Russia during spring 2014, 2015 and 2016.

Evangeliou, N.; Shevchenko, V.; Yttri, K. E.; Eckhardt, S.; Sollum, E.; Pokrovsky, O. S.; Kobelev, V. O.; Korobov, V. B.; Lobanov, A. A.; Starodymova, D. P.; Vorobyev, S. N.; Thompson, R.; Stohl, A.

2017

Elevated levels of polybrominated diphenyl ethers (PBDEs) in fish from Lake Mjøsa, Norway.

Mariussen, E.; Fjeld, E.; Breivik, K.; Steinnes, E.; Borgen, A.; Kjellberg, G.; Schlabach, M.

2008

Elevated stratopause events and downward transport of nitrogen oxides. NILU F

Orsolini, Y.; Limpasuvan, V.; Kinnison, D.

2014

Elevated stratopause events in the current and a future climate: A chemistry-climate model study

Scheffler, Janice; Ayarzagüena, Blanca; Orsolini, Yvan J.; Langematz, Ulrike

Elsevier

2021

Elever kan bidra med godt inneklimaarbeid - erfaringer og planer.

Høiskar, B. A. K.; Holøs, S.; Gustavsen, K.; Norum, B.

2017

Ellas klimaskjebne

Klöckner, Christian A.; Høiskar, Britt Ann Kåstad; Sverdrup-Thygeson, Anne (interview subjects); Rashid, Lara; Kingsrød, Marie Golimo (journalists)

2021

Elucidating nanofibre genotoxic mechanisms: An interlaboratory approach

Burgum, Michael J.; El Yamani, Naouale; Mariussen, Espen; Rundén-Pran, Elise; Sosnowska, Anita; Reinosa, Julian J.; Alcolea-Rodriguez, Victor; Fernandez, Jose F.; Portela, Raquel; Puzyn, Tomasz; Banares, Miguel; Clift, Martin J. D.; Dusinska, Maria; Doak, Shareen H.

John Wiley & Sons

2022

Elucidating the behavior of cyclic volatile methylsiloxanes in a subarctic freshwater food web: A modeled and measured approach.

Krogseth, I. S.; Undeman, E. M.; Evenset, A.; Christensen, G. N.; Whelan, M. J.; Breivik, K.; Warner, N. A.

2017

Elucidating the present-day chemical composition, seasonality and source regions of climate-relevant aerosols across the Arctic land surface

Moschos, Vaios; Schmale, Julia; Aas, Wenche; Becagli, Silvia; Calzolai, Giulia; Eleftheriadis, Konstantinos; Moffett, Claire E.; Schnelle-Kreis, Jürgen; Severi, Mirko; Sharma, Sangeeta; Skov, Henrik; Vestenius, Mika; Zhang, Wendy; Hakola, Hannele; Hellén, Heidi; Huang, Lin; Jaffrezo, Jean-Luc; Massling, Andreas; Nøjgaard, Jacob Klenø; Petäjä, Tuukka; Popovicheva, Olga; Sheesley, Rebecca J.; Traversi, Rita; Yttri, Karl Espen; Prévôt, André S. H.; Baltensperger, Urs; El Haddad, Imad

The Arctic is warming two to three times faster than the global average, and the role of aerosols is not well constrained. Aerosol number concentrations can be very low in remote environments, rendering local cloud radiative properties highly sensitive to available aerosol. The composition and sources of the climate-relevant aerosols, affecting Arctic cloud formation and altering their microphysics, remain largely elusive due to a lack of harmonized concurrent multi-component, multi-site, and multi-season observations. Here, we present a dataset on the overall chemical composition and seasonal variability of the Arctic total particulate matter (with a size cut at 10 μm, PM10, or without any size cut) at eight observatories representing all Arctic sectors. Our holistic observational approach includes the Russian Arctic, a significant emission source area with less dedicated aerosol monitoring, and extends beyond the more traditionally studied summer period and black carbon/sulfate or fine-mode pollutants. The major airborne Arctic PM components in terms of dry mass are sea salt, secondary (non-sea-salt, nss) sulfate, and organic aerosol (OA), with minor contributions from elemental carbon (EC) and ammonium. We observe substantial spatiotemporal variability in component ratios, such as EC/OA, ammonium/nss-sulfate and OA/nss-sulfate, and fractional contributions to PM. When combined with component-specific back-trajectory analysis to identify marine or terrestrial origins, as well as the companion study by Moschos et al 2022 Nat. Geosci. focusing on OA, the composition analysis provides policy-guiding observational insights into sector-based differences in natural and anthropogenic Arctic aerosol sources. In this regard, we first reveal major source regions of inner-Arctic sea salt, biogenic sulfate, and natural organics, and highlight an underappreciated wintertime source of primary carbonaceous aerosols (EC and OA) in West Siberia, potentially associated with the oil and gas sector. The presented dataset can assist in reducing uncertainties in modelling pan-Arctic aerosol-climate interactions, as the major contributors to yearly aerosol mass can be constrained. These models can then be used to predict the future evolution of individual inner-Arctic atmospheric PM components in light of current and emerging pollution mitigation measures and improved region-specific emission inventories.

2022

Elucidating the present-day chemical composition, seasonality and source regions of climate-relevant aerosols across the Arctic land surface

Moschos, Vaios; Schmale, Julia; Aas, Wenche; Becagli, Silvia; Calzolai, Giulia; Eleftheriadis, Konstantinos; Moffett, Claire E.; Schnelle-Kreis, Jürgen; Severi, Mirko; Sharma, Sangeeta; Skov, Henrik; Vestenius, Mika; Zhang, Wendy; Hakola, Hannele; Hellén, Heidi; Huang, Lin; Jaffrezo, Jean-Luc; Massling, Andreas; Nøjgaard, Jacob Klenø; Petäjä, Tuukka; Popovicheva, Olga; Sheesley, Rebecca J.; Traversi, Rita; Yttri, Karl Espen; Prévôt, André S. H.; Baltensperger, Urs; El Haddad, Imad

2022

Elucidation of contamination sources for poly- and perfluoroalkyl substances (PFASs) on Svalbard (Norwegian Arctic)

Skaar, Jøran Solnes; Ræder, Erik Magnus; Lyche, Jan Ludvig; Ahrens, Lutz; Kallenborn, Roland

A combination of local (i.e. firefighting training facilities) and remote sources (i.e., long-range transport) are assumed to be responsible for the occurrence of per- and polyfluoroalkyl substances (PFASs) in Svalbard (Norwegian Arctic). However, no systematic elucidation of local PFASs sources have been conducted yet. Therefore, a survey was performed aiming at identifying local PFASs pollution sources on the island of Spitsbergen (Svalbard, Norway). Soil, fresh water (lake, draining rivers), sea water, melt-water run-off, surface snow and coastal sediment samples were collected from Longyearbyen (Norwegian mining town), Ny-Ålesund (research facility) and the Lake Linnévatnet area (background site) during several campaigns (2014-2016) and analysed for 14 individual target PFASs. For background site (Linnévatnet area, sampling during April to June 2015), ∑PFAS levels ranged from 0.4 – 4 ng/L in surface lake water (n = 20). PFAS in melt water from the contributing glaciers showed similar concentrations (~4 ng/L, n = 2). The short chain perfluorobutanoate (PFBA) was predominant in lake water (60-80% of the ∑PFASs), meltwater (20-30 %) and run-off water (40 %). Long range transport is assumed to be the major PFAS source. In Longyearbyen, 5 water samples (i.e. 2 seawater, 3 run-off) were collected near the local firefighting training site (FFTS) in November 2014 and June 2015, respectively. The highest PFAS levels were found in FFTS melt water run-off (118 ng/L). PFOS was the most abundant compound in the FFTS meltwater run-off (53 – 58 % PFASs). At the research station Ny-Ålesund, sea water (n = 6), soil (n = 9) and fresh water (n = 10) were collected in June 2016. Low ∑PFAS concentrations were determined for sea water (5 - 6 ng/L), whereas high ∑PFAS concentrations were found in run-off water (113 – 119 ng/L) and soil (211 – 800 ng/g dry weight (dw)) collected close to the local FFTS. In addition, high ∑PFAS levels (127 ng/L) were also found in fresh water from lake Solvatnet close to former sewage treatment facility. Overall, at both FFTS affected sites (soil, water), PFOS was the most abundant compound (60 – 69% of ∑PFASs). FFTS and landfill locations were identified as major PFASs sources for Svalbard settlements.

2018

Publication
Year
Category