Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 9758 publications. Showing page 170 of 391:

Publication  
Year  
Category

High-Resolution Mass Spectrometry for Human Exposomics: Expanding Chemical Space Coverage

Lai, Yunjia; Koelmel, Jeremy P.; Walker, Douglas I; Price, Elliott J.; Papazian, Stefano; Manz, Katherine E.; Castilla-Fernández, Delia; Bowden, John A.; Nikiforov, Vladimir; David, Arthur; Bessonneau, Vincent; Amer, Bashar; Seethapathy, Suresch; Hu, Xin; Lin, Elizabeth Z.; Jbebli, Akrem; McNeil, Brooklynn R.; Barupal, Dinesh Kumar; Cerasa, Marina; Xie, Hongyu; Kalia, Vrinda; Nandakumar, Renu; Singh, Randolph R.; Tian, Zhenyu; Gao, Peng; Zhao, Yujia; Froment, Jean Francois; Rostkowski, Pawel; Dubey, Saurabh; Coufalíková, Kateřina; Seličová, Hana; Hecht, Helge; Liu, Sheng; Udhani, Hanisha H.; Restituito, Sophie; Tchou-Wong, Kam-Meng; Lu, Kun; Martin, Jonathan W.; Warth, Benedikt; Pollitt, Krystal J. Godri; Klánová, Jana; Fiehn, Oliver; Metz, Thomas O.; Pennell, Kurt D.; Jones, Dean P.

In the modern “omics” era, measurement of the human exposome is a critical missing link between genetic drivers and disease outcomes. High-resolution mass spectrometry (HRMS), routinely used in proteomics and metabolomics, has emerged as a leading technology to broadly profile chemical exposure agents and related biomolecules for accurate mass measurement, high sensitivity, rapid data acquisition, and increased resolution of chemical space. Non-targeted approaches are increasingly accessible, supporting a shift from conventional hypothesis-driven, quantitation-centric targeted analyses toward data-driven, hypothesis-generating chemical exposome-wide profiling. However, HRMS-based exposomics encounters unique challenges. New analytical and computational infrastructures are needed to expand the analysis coverage through streamlined, scalable, and harmonized workflows and data pipelines that permit longitudinal chemical exposome tracking, retrospective validation, and multi-omics integration for meaningful health-oriented inferences. In this article, we survey the literature on state-of-the-art HRMS-based technologies, review current analytical workflows and informatic pipelines, and provide an up-to-date reference on exposomic approaches for chemists, toxicologists, epidemiologists, care providers, and stakeholders in health sciences and medicine. We propose efforts to benchmark fit-for-purpose platforms for expanding coverage of chemical space, including gas/liquid chromatography–HRMS (GC-HRMS and LC-HRMS), and discuss opportunities, challenges, and strategies to advance the burgeoning field of the exposome.

2024

Higher plasma oxidative damage and lower plasma antioxidant defences in an Arctic seabird exposed to longer perfluoroalkyl acids

Costantini, David; Blévin, Pierre; Herzke, Dorte; Moe, Børge; Gabrielsen, Geir W.; Bustnes, Jan Ove; Chastel, Olivier

Elsevier

2018

Highlights from the latest research and monitoring activities at the Trollhaugen Observatory

Aas, Wenche; Eckhardt, Sabine; Evangeliou, Nikolaos; Fiebig, Markus; Hansen, Georg Heinrich; Lunder, Chris Rene

2018

Historical greenhouse gas concentrations for climate modelling (CMIP6) .

Meinshausen, M.; Vogel, E.; Nauels, A.; Lorbacher, K.; Meinshausen, N.; Etheridge, D. M.; Fraser, P. J.; Montzka, S. A.; Rayner, P. J.; Trudinger, C. M.; Krummel, P. B.; Beyerle, U.; Canadell, J. G.; Daniel, J. S.; Enting, I. G.; Law, R. M.; Lunder, C. R.; O'Doherty, S.; Prinn, R. G.; Reimann, S.; Rubino, M.; Velders, G. J. M.; Vollmer, M. K.; Wang, R. H. J.; Weiss, R.

2017

Historical trends in contaminant supply to Lake Ellasjøen, Bjørnøya.

Christensen, G.N.; Evenset, A.; Carroll, J.; Berger, U.

2005

History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE)

Prinn, Ronald G.; Weiss, Ray F.; Arduini, Jgor; Arnold, Tim; DeWitt, H. Langley; Fraser, Paul J.; Ganesan, Anita L.; Gasore, Jimmy; Harth, Christina M.; Hermansen, Ove; Kim, Jooil; Krummel, Paul B.; Li, Shanlan; Loh, Zöe M.; Lunder, Chris Rene; Maione, Michela; Manning, Alistair J.; Miller, Ben R.; Mitrevski, Blagoj; Muhle, Jens; O'Doherty, Simon; Park, Sunyoung; Reimann, Stefan; Rigby, Matt; Saito, Takuya; Salameh, Peter K.; Schmidt, Roland; Simmonds, Peter G.; Steele, L. Paul; Vollmer, Martin K.; Wang, Ray H.; Yao, Bo; Yokouchi, Yoko; Young, Dickon; Zhou, Lingxi

2018

Hitting the hotspots – Targeted deployment of air source heat pump technology to deliver clean air communities and climate progress: A case study of Ireland

Ó Broin, Eion; Kelly, J. Andrew; Sousa Santos, Gabriela; Grythe, Henrik; Svendby, Tove Marit; Solberg, Sverre; Kelleher, Luke; Clinch, J. Peter

Electrification of residential heating and investment in building energy efficiency are central pillars of many national strategies to reduce carbon emissions from the built environment sector. Ireland has a strong dependence on oil use for central heating and a substantial share of homes still using solid fuels. The current national strategy calls for the retrofitting of 400,000 home heating systems with heat pumps by 2030, principally replacing oil fired heating systems. Displacing natural gas, oil and solid fuel boilers with heat pumps will have a favourable impact on climate outcomes. However, the impact on air pollutant outcomes is far more favourable when solid fuels are replaced, and the positive impact on ambient air quality is much enhanced where concentrated clusters of solid-fuel use are targeted. This research spatially analyses emissions and air pollutant concentration outcomes for both targeted and non-targeted deployments of heat pumps and shows that a focused deployment of just 3% of the national heat pump target on solid-fuel homes could offer similar progress on climate goals but with a substantial impact in terms of reducing air pollution hot spots. For the Irish residential heating season (October–March), the targeted solid fuel scenario delivers average PM2.5 concentration decreases of 20–34%. This paper shows that these targeted communities are often in areas of relative deprivation, and as such, direct support for fabric retrofitting and heat pump technology installation offers the potential to simultaneously advance climate, air and just transition policy ambitions.

Elsevier

2022

Publication
Year
Category