Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 9883 publications. Showing page 21 of 396:

Publication  
Year  
Category

Tropospheric ozone assessment report: database and metrics data of global surface ozone observations.

Schultz, M. G.; Schröder, S.; Lyapina, O.; Cooper, O.; Galbally, I.; Petropavlovskikh, I.; von Schneidemesser, E.; Tanimoto, H.; Elshorbany, Y.; Naja, M.; Seguel, R. J.; Dauert, U.; Eckhardt, P.; Feigenspahn, S.; Fiebig, M.; Hjellbrekke, A.-G.; Hong, Y.-D.; Kjeld, P. C.; Koide, H. Lear, G.; Tarasick, D.; Ueno, M.; Wallasch, M.; Baumgardner, D.; Chuang, M.-T.; Gillett, R.; Lee, M.; Molloy, S.; Moolla, R.; Wang, T.; Sharps, K.; Adame, J. A.; Ancellet, G.; Apadula, F.; Artaxo, P.; Barlasina, M.; Bogucka, M.; Bonasoni, P.; Chang, L.; Colomb, A.; Cuevas-Agulló, E.; Cupeiro, M.; Degorska, A.; Ding, A.; Fröhlich, M.; Frolova, M.; Gadhavi, H.; Gheusi, F.; Gilge, S.; Gonzalez, M. Y.; Gros, V.; Hamad, S. H.; Helmig, D.; Henriques, D.; Hermansen, O.; Holla, R.; Hueber, J.; Im, U.; Jaffe, D. A.; Komala, N.; Kubistin, D.; Lam, K.-S.; Laurila, T.; Lee, H.; Levy, I.; Mazzoleni, C.; Mazzoleni, L.; McClure-Begley, A.; Mohamad, M.; Murovic, M.; Navarro-Comas, M.; Nicodim, F.; Parrish, D.; Read, K. A.; Reid, N.; Ries, L.; Saxena, P.; Schwab, J. J.; Scorgie, Y.; Senik, I.; Simmonds, P.; Sinha, V.; Skorokhod, A. I.; Spain, G.; Spangl, W.; Spoor, R.; Springston, S. R.; Steer, K.; Steinbacher, M.; Suharguniyawan, E.; Torre, P.; Trickl, T.; Weili, L.; Weller, R.; Xiaobin, X.; Xue, L.; Zhiqiang, M.

2017

Tropospheric ozone and its control

Volz-Thomas, A.; Beekmann, M.; Derwent, D.; Law, K.; Lindskog, A.; Prévôt, A.; Roemer, M.; Schultz, M.; Schurath, U.; Solberg, S.; Stohl, A.

2002

Tropospheric ozone and aerosols in climate agreements: scientific and political challenges.

Rypdal, K.; Berntsen, T.; Fuglestvedt, J.; Aunan, K.; Torvanger, A.; Stordal, F.; Pacyna, J.M.; Nygaard, L.P.

2005

Tropospheric CO vertical profiles deduced from total columns using data assimilation: methodology and validation.

El Amraoui, L.; Attié, J.-L.; Ricaud, P.; Lahoz, W. A.; Piacentini, A.; Peuch, V.-H.; Warner, J. X.; Abida, R.; Barré, J.; Zbinden, R.

2014

Tropospheric aerosols and clouds.

Noone, K.; Baltensperger, U.; Flossmann, A.; Fuzzi, S.; Hass, H.; Nemitz, E.; Putaud, J.-P.; Puxbaum, H.; Schurath, U.; Tørseth, K.; ten Brink, H.

2002

Trophic and fitness correlates of mercury and organochlorine compound residues in egg-laying Antarctic petrels

Carravieri, Alice; Warner, Nicholas Alexander; Herzke, Dorte; Brault-Favrou, Maud; Tarroux, Arnaud; Fort, Jérôme; Bustamante, Paco; Descamps, Sebastien

Elsevier

2020

Trophic and fitness correlates of Hg and POP exposure in incubating female Antarctic petrels

Carravieri, Alice; Warner, Nicholas Alexander; Tarroux, Arnaud; Descamps, Sebastien; Bustamante, P.

2019

Troll Station - A new year-round atmospheric monitoring and research station in Antarctica.

Hansen, G.H.; Lunder, C.R.; Schmidbauer, N.; Stebel, K.; Aas, W.; Kallenborn, R.; Holmén, K.; Tørseth, K.; Berg, T.

2007

Troll observing network – for useful new data about Antarctica

Pedersen, Christina Alsvik; Njåstad, Birgit; Descamps, Sebastien; Hattermann, Tore; Hudson, Stephen; Flått, Stig; Tronstad, Stein; Aas, Wenche; Darelius, Elin Maria K.; Miloch, Wojciech Jacek; Schweitzer, Johannes; Storvold, Rune

What do Antarctic petrels in Svarthamaren, soil structure movements at Troll research station and ocean chemistry in the Håkon VII Sea have in common? They will all be studied at the Troll observing network currently being established at Troll research station in Dronning Maud Land in Antarctica.

2023

Troll observing network – for useful new data about Antarctica

Pedersen, Christina Alsvik; Njåstad, Birgit; Descamps, Sebastien; Hattermann, Tore; Hudson, Stephen; Flått, Stig; Aas, Wenche; Darelius, Elin Maria K.; Miloch, Wojciech Jacek; Schweitzer, Johannes; Storvold, Rune

2023

Triclosan - utslipp og forekomst av triclosan i det norske miljøet. NILU F

Schlabach, M.; Fjeld, E.; Kjellberg, G.; Ruus, A.; Vogelsang, C.

2005

Trick or treat? Ingestion of biofouled plastic fibres by sea urchins

Halsband, Claudia; Abrahams, Alexandra Kate; Bourgeon, Sophie; Herzke, Dorte

2021

Trenger Norge et målrettet samfunnsoppdrag for sirkulær økonomi? Utrednings- og medvirkningsfase for et mulig samfunnsoppdrag for sirkulær økonomi

Möller, Charlotta; Guerreiro, Cristina; Tarrasón, Leonor

NILU har i 2024 bistått Klima- og miljødepartementet (KLD) med en utrednings- og medvirkningsprosess for å se på muligheten for etablering av et samfunnsoppdrag for sirkulær økonomi. Dette er et oppdrag under KLDs rammeavtale for klima- og miljøkunnskap. I regjeringens «Handlingsplan for en sirkulær økonomi» er et av handlingspunktene å utrede et samfunnsoppdrag for sirkulær økonomi. Målet med dette oppdraget var å fasilitere en prosess for å identifisere mulige overordnede mål og delmål og etablere rammen for et mulig nasjonalt samfunnsoppdrag. Aktivitetene i denne fasen inkluderte en serie med koordinerte samskapingsmøter for å mobilisere og engasjere relevante samfunnsaktører og komme fram til en felles forståelse av et mulig målrettet samfunnsoppdrag. Prosessen og resultatene er oppsummert i denne rapporten.

NILU

2024

Trenger du egentlig en inneklimasensor?

Castell, Nuria (interview subject); Åserud, Rikke (journalist)

2021

Trends, composition, and sources of carbonaceous aerosol at the Birkenes Observatory, northern Europe, 2001–2018

Yttri, Karl Espen; Canonaco, Francesco; Eckhardt, Sabine; Evangeliou, Nikolaos; Fiebig, Markus; Gundersen, Hans; Hjellbrekke, Anne-Gunn; Myhre, Cathrine Lund; Platt, Stephen Matthew; Prévôt, André S. H.; Simpson, David; Solberg, Sverre; Surratt, Jason D.; Tørseth, Kjetil; Uggerud, Hilde Thelle; Vadset, Marit; Wan, Xin; Aas, Wenche

We present 18 years (2001–2018) of aerosol measurements, including organic and elemental carbon (OC andEC), organic tracers (levoglucosan, arabitol, mannitol, trehalose, glucose, and 2-methyltetrols), trace elements, andions, at the Birkenes Observatory (southern Norway) – a site representative of the northern European region. The OC/EC (2001–2018) and the levoglucosan (2008–2018) time series are the longest in Europe, with OC/EC available for the PM10, PM2.5 (fine), and PM10–2.5 (coarse) size fractions, providing the opportunity for a nearly 2-decade-long assessment. Using positive matrix factorization (PMF), we identify seven carbonaceous aerosol sources at Birkenes: mineral-dust-dominated aerosol (MIN), traffic/industry-like aerosol (TRA/IND), short-range-transported biogenic secondary organic aerosol (BSOASRT), primary biological aerosol particles (PBAP), biomass burning aerosol (BB), ammonium-nitrate-dominated aerosol (NH4NO3), and (one low carbon fraction) sea salt aerosol (SS).
We observed significant (p < 0.05), large decreases in EC in PM10 (−3.9 % yr−1) and PM2.5 (−4.2 % yr−1) anda smaller decline in levoglucosan (−2.8 % yr−1), suggesting that OC/EC from traffic and industry is decreasing, whereas the abatement of OC/EC from biomass burning has beenslightly less successful. EC abatement with respect to anthropogenic sources is further supported by decreasing EC fractions in PM2.5 (−3.9 % yr−1) and PM10(−4.5 % yr−1).
PMF apportioned 72 % of EC to fossil fuel sources; this was further supported by PMF applied to absorption photometer data, which yielded a two-factor solution with alow aerosol Ångstrøm exponent (AAE=0.93) fraction, as-sumed to be equivalent black carbon from fossil fuel combustion (eBCFF), contributing 78 % to eBC mass. The higher AAE fraction (AAE=2.04) is likely eBC from BB (eBCBB). Source–receptor model calculations (FLEXPART) showed that continental Europe and western Russia were the main source regions of both elevated eBCBB and eBCFF.
Dominating biogenic sources explain why there was no downward trend for OC. A relative increase in the OC fraction in PM2.5(+3.2 % yr−1) and PM10(+2.4 % yr−1) underscores the importance of biogenic sources at Birkene (BSOA and PBAP), which were higher in the vegetative season and dominated both fine (53 %) and coarse (78 %) OC. Furthermore, 77 %–91 % of OC in PM2.5, PM10–2.5, and PM10 was attributed to biogenic sources in summer vs. 22 %–37 % in winter. The coarse fraction had the highest share of biogenic sources regardless of season and was dominated by PBAP, except in winter. Our results show a shift in the aerosol composition at Birkenes and, thus, also in the relative source contributions. The need for diverse offline and online carbonaceous aerosol speciation to understand carbonaceous aerosol sources, including their seasonal, annual, and long-term variability, has been demonstrated.

2021

Publication
Year
Category