Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 9883 publications. Showing page 215 of 396:

Publication  
Year  
Category

Luftkvalitet i norske byer

Grossberndt, Sonja

2019

Luftkvalitet i Ny-Ålesund. Målinger av lokal luftkvalitet 2019 og 2020.

Johnsrud, Mona; Hermansen, Ove; Krejci, Radovan; Tørnkvist, Kjersti Karlsen

De målte konsentrasjonene var generelt lave for alle komponenter og under nasjonale grenseverdier for beskyttelse av menneskets helse og økosystemet. Vind fra nordlige sektorer ga de høyeste gjennomsnittskonsentrasjonene av nitrogenoksider og svoveldioksid, noe som peker på kraftstasjonen og havnen som mulige kilder. Vi ser også enkelte episoder med langtransport av svoveldioksid.

NILU

2021

Luftkvalitet i Vefsn. NILU F

Gram, F.

2003

2012

Luftkvaliteten blir bedre. Likevel jubler ikke forskerne

Platt, Stephen Matthew (interview subject); Storrønningen, Lilli (journalist)

2025

Luftkvaliteten i koronaens tid - Hva har vi observert i byene våre?

Høiskar, Britt Ann Kåstad; Grythe, Henrik; Johnsrud, Mona; Eckhardt, Sabine

2020

Luftkvalitetsmålingene i Tromsø holder mål

Høiskar, Britt Ann Kåstad; Tørnkvist, Kjersti Karlsen

2018

Lung cancer and air pollution: a 27 year follow up of 16 209 Norwegian men.

Nafstad, P.; Håheim, L.L.; Oftedal, B.; Gram, F.; Holme, I.; Hjermann, I.; Leren, P.

2003

Lung cancer risk prediction using DNA methylation markers

Guida, Florence; Nøst, Therese Haugdahl; Relton, Caroline; Vineis, Paolo; Chadeau-Hyam, Marc; Severi, Gianluca; Sandanger, Torkjel M; Johansson, Mattias

2019

Läkemedels spridning i mark och vatten.

Tysklind, M.; Fick, J.; Kallenborn, R.

2005

Løsningspils med luftforskere

Heimstad, Eldbjørg Sofie; Schlabach, Martin; Hanssen, Linda (interview subjects)

2019

Løypene er forgiftet

Lyche, Jan Ludvig; Berg, Vidar; Herzke, Dorte; Grønnestad, Randi; Kärrmann, Anna (interview subjects); Krokfjord, Torgeir; Oksnes, Bernt Jakob; Rasmussen, John; Gedde-Dahl, Siri (journalists)

2019

MACC-II, the preoperational GMES atmospheric service. NILU F

Tarrasón, L.; Peuch, V.-H.

2012

Machine Learning-Based Digital Twin for Predictive Modeling in Wind Turbines

Fahim, Muhammad; Sharma, Vishal; Cao, Tuan-Vu; Canberk, Berk; Duong, Trung Q.

Wind turbines are one of the primary sources of renewable energy, which leads to a sustainable and efficient energy solution. It does not release any carbon emissions to pollute our planet. The wind farms monitoring and power generation prediction is a complex problem due to the unpredictability of wind speed. Consequently, it limits the decision power of the management team to plan the energy consumption in an effective way. Our proposed model solves this challenge by utilizing a 5G-Next Generation-Radio Access Network (5G-NG-RAN) assisted cloud-based digital twins’ framework to virtually monitor wind turbines and form a predictive model to forecast wind speed and predict the generated power. The developed model is based on Microsoft Azure digital twins infrastructure as a 5-dimensional digital twins platform. The predictive modeling is based on a deep learning approach, temporal convolution network (TCN) followed by a non-parametric k-nearest neighbor (kNN) regression. Predictive modeling has two components. First, it processes the univariate time series data of wind to predict its speed. Secondly, it estimates the power generation for each quarter of the year ranges from one week to a whole month (i.e., medium-term prediction) To evaluate the framework the experiments are performed on onshore wind turbines publicly available datasets. The obtained results confirm the applicability of the proposed framework. Furthermore, the comparative analysis with the existing classical prediction models shows that our designed approach obtained better results. The model can assist the management team to monitor the wind farms remotely as well as estimate the power generation in advance.

IEEE (Institute of Electrical and Electronics Engineers)

2022

Machine Learning-Based Retrieval of Total Ozone Column Amount and Cloud Optical Depth from Irradiance Measurements

Sztipanov, Milos; Krizsán, Levente; Li, Wei; Stamnes, Jakob J.; Svendby, Tove Marit; Stamnes, Knut

A machine learning algorithm combined with measurements obtained by a NILU-UV irradiance meter enables the determination of total ozone column (TOC) amount and cloud optical depth (COD). In the New York City area, a NILU-UV instrument on the rooftop of a Stevens Institute of Technology building (40.74° N, −74.03° E) has been used to collect data for several years. Inspired by a previous study [Opt. Express 22, 19595 (2014)], this research presents an updated neural-network-based method for TOC and COD retrievals. This method provides reliable results under heavy cloud conditions, and a convenient algorithm for the simultaneous retrieval of TOC and COD values. The TOC values are presented for 2014–2023, and both were compared with results obtained using the look-up table (LUT) method and measurements by the Ozone Monitoring Instrument (OMI), deployed on NASA’s AURA satellite. COD results are also provided.

MDPI

2024

Publication
Year
Category