Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 9757 publications. Showing page 336 of 391:

Publication  
Year  
Category

Survival rate and breeding outputs in a high Arctic seabird exposed to legacy persistent organic pollutants and mercury.

Goutte, A.; Barbraud, C.; Herzke, D.; Bustamante, P.; Angelier, F.; Tartu, S.; Clément-Chastel, C.; Moe, B.; Bech, C.; Gabrielsen, G.W.; Bustnes, J.O.; Chastel, O.

2015

Suspect screening in Nordic countries: Point sources in city areas. TemaNord, 2017:561

Schlabach, M.; Haglund, P.; Reid, M.; Rostkowski, P.

2017

1997

Sustainability and Responsibility in ICT-enabled Urban Environmental Research and Decision-making

Barkved, L. J.; Lopez-Aparicio, S.; Throne-Holst, H.; Fossum, S. M.

2017

Sustainability of future coasts and estuaries: A synthesis

Newton, A.; Harff, J.; You, Z.-J.; Zhang, H.; Wolanski, E.

2016

Sustainable atmosphere; transport and transformation of pollutants. NILU PP

Solberg, S.; Coddewille, P.; Hov, Ø.; Orsolini, Y.; Simpson, D.; Uhse, K.

2005

2014

Svalbard local air contamination by PAHs and nitro- and oxy-PAHs

Drotikova, Tatiana; Albinet, Alexandre; Halse, Anne Karine; Reinardy, Helena; Ali, Aasim Musa Mohamed; Kallenborn, Roland

2020

Svevestøv og miljøfartsgrenser

Grythe, Henrik (interview subject)

2022

Svevestøvmåling i bydel Fana langs FV546. 23. desember 2016 - 31. desember 2017.

Hak, Claudia

På oppdrag fra Statens vegvesen Region vest har NILU utført målinger av PM10 og PM2.5 ved et boligområde ved Fanavegen (Bergen kommune). Støvende aktivitet i forbindelse med anleggsarbeid genererer svevestøv til sjenanse for berørte naboer. Målingene pågikk i perioden 23. desember 2016 – 31. desember 2017. Resultatene ble rapportert hver måned. Årsmiddel-konsentrasjonene for PM10 og PM2.5 i 2017 var langt under respektive grenseverdier. I måleperioden ble det observert 3 døgn med PM10-døgnmiddelverdier over grenseverdien på 50 μg/m3. Det er tillatt med 30 døgnverdier over dette nivået. Årsaken til høy PM10-konsentrasjon var oppvirvling av svevestøv fra kjørebanen. Så lenge tiltak for å dempe støvoppvirvling ble iverksatt tidsnok, var svevestøvkonsentrasjonen innenfor varslingsklassen for liten eller ingen helserisiko.

NILU

2018

Svovelskya kom – slik gjekk det

Tørseth, Kjetil (interview subject); Baas, Jarand Aga (journalist)

2023

Synergistic and Competing Influences of Air Pollutants on Air Quality and Arctic Climate

von Salzen, Knut; Anenberg, Susan C.; Arnold, Steve; Eckhardt, Sabine; Ekman, Annica; Flanner, Mark G.; Gauss, Michael; Im, Ulas; Klimont, Zbigniew; Krishnan, Srinath; Kupiainen, Kaarle; Mahmood, Rashed; Oliviè, Dirk Jan Leo; Oshima, Naga; Pozzoli, Luca; Rao, Shilpa; Sand, Maria; Sigmond, Michael; Tsigaridis, Kostas; Tsyro, Svetlana; Turnock, Steven T; Van Dingenen, Rita; Whaley, Cynthia; Winter, Barbara

2021

Synergistic exploitation of the methane product from Sentinel-SP for applications in the Arctic (STEPS)

Stebel, Kerstin; Kylling, Arve; Schneider, Philipp; Ytre-Eide, Martin

The main goal of this feasibility study was to evaluate the potential of adding value to the Sentinel 5P TROPOMI methane product over Norway and the Arctic through the synergistic use of relevant observations from other Sentinel satellites and machine learning. We assessed the data availability of ESA operational and research-based WFMD XCH4 products over the Northern hemisphere, the Nordic countries and the Arctic/Northern latitudes. ESA’s XCH4 data have poor coverage over Norway. Seeing the two datasets as complementary, seems to be the most reasonable approach for utilization them. Furthermore, we investigated potential synergies between satellite products from different platforms. A random forest (RF) machine learning algorithm was implemented. It shows the importance of daytime land surface temperature (LST) as predictor variable for CH4. Our results indicate that the RF-model has a very good capability of filling small gaps in the data.

NILU

2022

Synergy of Sentinel 5P and ground measurements to estimate surface NO2 concentration using Machine Learning models

Shetty, Shobitha; Schneider, Philipp; Stebel, Kerstin; Hamer, Paul David; Kylling, Arve; Berntsen, Terje Koren

2022

Synthesis of CCN data from the ACTRIS network and complementary observation sites.

Schmale, J.; Henzing, J.S.; Kos, G.P.A.; Schlag, P.; Holzinger, R.; Aalto, P.P.; Keskinen, H.; Paramonov, M.; Stratmann, F.; Henning, S.; Poulain, L.; Sellegri, K.; Ovadnevaite, J.; Krüger, M.; Carbone, S.; Brito, J.; Jefferson, A.; Whitehead, J.; Carslaw, K.; Fröhlich, R.; Herrmann, E.; Hammer, E.; Gysel, M.; Baltensperger, U.; the CCN Team (including Aas, W.; Fiebig, M.).

2015

Synthetic musks in ambient and indoor air. Handbook of environmental chemistry. Vol. 3, Anthropogenic compounds, pt. X

Kallenborn, R.; Gatermann, R.

2004

Publication
Year
Category