Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 9830 publications. Showing page 345 of 394:

Publication  
Year  
Category

Monitoring of environmental contaminants in air and precipitation. Annual report 2021.

Bohlin-Nizzetto, Pernilla; Aas, Wenche; Halvorsen, Helene Lunder; Nikiforov, Vladimir; Pfaffhuber, Katrine Aspmo

This report presents data from 2021 and time-trends for the Norwegian monitoring programme "Atmospheric contaminants". The results cover 200 organic compounds (regulated and non-regulated), 11 heavy metals, and a selection of organic chemicals of concern.

NILU

2022

Health Risk Assessment of Air Pollution and the Impact of the New WHO Guidelines

Soares, Joana; Ortiz, Alberto González; Gsella, Artur; Horálek, Jan; Plass, Dietrich; Kienzler, Sarah

Air pollution is a major cause of premature death and disease and is the single largest environmental health risk in Europe. Heart disease and stroke are the most common reasons for premature deaths attributable to air pollution, followed by lung diseases and lung cancer.

The health risk assessment methodology assumptions have been recently adapted to follow the recommendations by the World Health Organisation (WHO), released in 2021. The new global air quality guidelines by WHO provide up-to-date health-based guideline levels for major health-damaging air pollutants and new recommendations for assessing the risk of exposure to air pollution.
This report estimates the health risk related to air pollution in 2020 based on the latest methodology. The estimates consider the number of premature deaths and years of life lost related to exposure to fine particulate matter, ozone and nitrogen dioxide, both for the 27 Member States of the European Union and for additional 14 European countries (Albania, Andorra, Bosnia and Herzegovina, Iceland, Kosovo, Liechtenstein, Monaco, Montenegro, North Macedonia, Norway, San Marino, Serbia, Switzerland, and Türkiye).

A sensitivity analysis to the changes in concentration-response functions and counterfactual concentrations is performed to understand the impact of such changes on the mortality outcome estimates. The sensitivity analysis included both old and new health risk methodology assumptions but also the recommendation from the ELAPSE study on the concentration response functions. The ELAPSE project includes some of the most recent studies on the health effects at low air pollution levels by examining associations between exposures to relatively low levels of air pollution across Europe, including levels below the current EU standards.

The results for 2020 show that the largest health risks are estimated for the countries with the largest populations. However, in relative terms, when considering e.g., years of life lost per 100 000 inhabitants, the largest relative risks are observed in central and eastern European countries for PM2.5, in central and southern European countries for NO2, and south and eastern European for O3. The lowest impact is found for the northern and north-western parts of Europe, where the concentrations are lowest. The number of premature deaths attributed to air pollution in 2020 compared to 2019, increased for PM2.5 and decreased for NO2 and O3. Apart from the changes in concentrations and demographics, the COVID-19 pandemics seems to also have an influence on these changes. For PM2.5, the reduction in concentrations were counteracted by the excess of deaths due to the pandemics. In the case of NO2, the reduction in concentrations was more pronounced as a result of the lockdown measures and the drastic reduction in traffic and its impact in reducing mortality was bigger than the increasing impact of excess of deaths due to COVID-19.

Changing assumptions on concentration-response functions and counterfactual concentrations have implications for estimating mortality health outcomes. The sensitivity analysis shows that it is not straightforward to assess which assumptions estimates the highest health impacts when both factors change. In this case, the final outcome will depend on the concentration at the grid-cell level. The latest assumptions are expected to reduce the health outcomes for PM2.5 and increase for NO2 and O3, when compared to the previous one. When aggregated to all countries, the health outcomes are reduced by over 40 % for PM2.5 and increased by 50 % and 30 % for NO2 and O3, respectively, in 2020. However, this change varies across countries depending on the concentration level the population in the individual countries is exposed to.

ETC/HE

2022

Validation of Aerosol Model and Reanalysis Products over the Arctic and Implications for Regional Aerosol-Cloud Interactions

Zamora, Lauren M; Kahn, Ralph A.; Evangeliou, Nikolaos; Zwaaftink, Christine Groot; Huebert, Klaus

2022

Improving Estimates of Sulfur, Nitrogen, and Ozone Total Deposition through Multi-Model and Measurement-Model Fusion Approaches

Fu, Joshua S.; Carmichael, Gregory R.; Dentener, Frank; Aas, Wenche; Vestøl, Anna Camilla Andersson; Barrie, Leonard A.; Cole, AS; Galy-Lacaux, Corinne; Geddes, Jeffrey; Itahashi, Syuichi; Kanakidou, Maria; Labrador, Lorenzo; Paulot, Fabien; Schwede, Donna; Tan, Jiani; Vet, Robert

Earth system and environmental impact studies need high quality and up-to-date estimates of atmospheric deposition. This study demonstrates the methodological benefits of multimodel ensemble and measurement-model fusion mapping approaches for atmospheric deposition focusing on 2010, a year for which several studies were conducted. Global model-only deposition assessment can be further improved by integrating new model-measurement techniques, including expanded capabilities of satellite observations of atmospheric composition. We identify research and implementation priorities for timely estimates of deposition globally as implemented by the World Meteorological Organization.

2022

Status report of air quality in Europe for year 2021, using validated and up-to-date data

Targa, Jaume; Ripoll, Anna; Banyuls, Lorena; Ortiz, Alberto González; Soares, Joana

This report presents summarised information on the status of air quality in Europe in 2021, based on Up-To-Date (i.e. prior to final quality control) and validated air quality monitoring data reported by the member and cooperating countries of the EEA. It aims at giving more timely and preliminary information on the status of ambient air quality in Europe in 2021 for five key air pollutants (PM10, PM2.5, O3, NO2 and SO2). The report also gives a preliminary assessment of the progress towards meeting the European air quality standards for the protection of health and the new World Health Organization air quality guidelines, and compares the air quality status in 2021 with the previous three years. The preliminary data reported for 2021 shows that more than 11% and 9% of the monitoring stations exceeded the EU standards for PM10 and O3, respectively. The WHO AQG for PM2.5, PM10, O3 and SO2 were exceeded by 94%, 66%, 92% and 4%, respectively. Exceedances of the NO2 limit value still occur in 8 reporting countries and WHO AQG still occur in 35 reporting countries.

ETC/HE

2022

One planet: one health. A call to support the initiative on a global science–policy body on chemicals and waste

Brack, Werner; Barcelo Culleres, Damia; Boxall, Alistair B. A.; Budzinski, Hélène; Castiglioni, Sara; Covaci, Adrian; Dulio, Valeria; Escher, Beate I.; Fantke, Peter; Kandie, Faith; Fatta-Kassinos, Despo; Hernández, Félix J.; Hilscherová, Klara; Hollender, Juliane; Hollert, Henner; Jahnke, Annika; Kasprzyk-Hordern, Barbara; Khan, Stuart J.; Kortenkamp, Andreas; Kümmerer, Klaus; Lalonde, Brice; Lamoree, Marja H.; Levi, Yves; Lara Martín, Pablo Antonio; Montagner, Cassiana C.; Mougin, Christian; Msagati, Titus; Oehlmann, Jörg; Posthuma, Leo; Reid, Malcolm James; Reinhard, Martin; Richardson, Susan D.; Rostkowski, Pawel; Schymanski, Emma; Schneider, Flurina; Slobodnik, Jaroslav; Shibata, Yasuyuki; Snyder, Shane Allen; Fabriz Sodré, Fernando; Teodorovic, Ivana; Thomas, Kevin V; Umbuzeiro, Gisela A.; Viet, Pham Hung; Yew-Hoong, Karina Gin; Zhang, Xiaowei; Zuccato, Ettore

The chemical pollution crisis severely threatens human and environmental health globally. To tackle this challenge the establishment of an overarching international science–policy body has recently been suggested. We strongly support this initiative based on the awareness that humanity has already likely left the safe operating space within planetary boundaries for novel entities including chemical pollution. Immediate action is essential and needs to be informed by sound scientific knowledge and data compiled and critically evaluated by an overarching science–policy interface body. Major challenges for such a body are (i) to foster global knowledge production on exposure, impacts and governance going beyond data-rich regions (e.g., Europe and North America), (ii) to cover the entirety of hazardous chemicals, mixtures and wastes, (iii) to follow a one-health perspective considering the risks posed by chemicals and waste on ecosystem and human health, and (iv) to strive for solution-oriented assessments based on systems thinking. Based on multiple evidence on urgent action on a global scale, we call scientists and practitioners to mobilize their scientific networks and to intensify science–policy interaction with national governments to support the negotiations on the establishment of an intergovernmental body based on scientific knowledge explaining the anticipated benefit for human and environmental health.

Springer

2022

Total ozone trends and variability at three northern high-latitude stations

Bernet, Leonie; Svendby, Tove Marit; Hansen, Georg H.; Orsolini, Yvan J.; Dahlback, Arne; Goutail, Florence; Pazmino, Andrea; Petkov, Boyan

2022

EMEP modelling of carbonaceous aerosols in Europe: status and issues

Simpson, David; van der Gon, Hugo A.C. Denier; Kuenen, Jeroen; Yttri, Karl Espen

2022

Characterisation of cumulative risk of contaminants to organisms exposed to stormwater in Oslo, Norway

Ruus, Anders; Xie, Li; Wolf, Raoul; Petersen, Karina; Færgestad, E. M.; Heimstad, Eldbjørg Sofie; Harju, Mikael; Tollefsen, Knut-Erik

2022

Svevestøv og miljøfartsgrenser

Grythe, Henrik (interview subject)

2022

Source apportionment to support air quality management practices. A fitness-for-purpose guide (V 4.0).

Clappier, A.; Thunis, P.; Pirovano, G.; Riffault, V.; Gilardoni, S.; Pisoni, E.; Guerreiro, Cristina; Monteiro, A.; Dupont, H; Waersted, E.; Hellebust, S.; Stocker, J.; Eriksson, A.; Angyal, A.; Bonafe, G.; Montanari, F.; Matejovica, J.; Bartzis, J.; Gianelle, V.

Information on the origin of pollution is an essential element of air quality management that helps identifying measures to control air pollution. In this document, we review the most widely used source-apportionment (SA) methods for air quality management. The focus is on particulate matter but examples are provided for NO2 as well. Using simple theoretical examples, we explain the differences between these methods and the circumstances where they give different results and thus possibly different conclusions for air quality management. These differences are a consequence of the assumptions that underpin each methodology and determine/limit their range of applicability. We show that ignoring these underlying assumptions is a risk for efficient/successful air quality management when the methods are used outside their scope or range of applicability.

Publications Office for the European Union

2022

Monitoring atmospheric composition and deposition in Norway

Aas, Wenche; Bohlin-Nizzetto, Pernilla; Hak, Claudia; Pfaffhuber, Katrine Aspmo; Uggerud, Hilde Thelle

The Norwegian monitoring programme is set up to meet national and international obligations and needs for measurement data with a long-term commitment. The data are important for compliance monitoring as well as input for effect studies. The monitoring of atmospheric composition and deposition are organised under national programmes mainly funded by the Norwegian Environment Agency in addition to some direct support from the Ministry of Climate and Environment. NILU – Norwegian Institute for Air Research is responsible for the daily operation and reporting of the results from this monitoring. The monitoring aim to fulfil several inter-connected purposes and is divided in four main programmes: transboundary fluxes, contaminants, climate change and the ozone layer. In addition, regularly moss surveys are conducted to assess atmospheric deposition of pollutants such as heavy metals.

NILU

2022

Synergy of Sentinel 5P and ground measurements to estimate surface NO2 concentration using Machine Learning models

Shetty, Shobitha; Schneider, Philipp; Stebel, Kerstin; Hamer, Paul David; Kylling, Arve; Berntsen, Terje Koren

2022

Tiltaksutredning for lokal luftkvalitet i Levanger kommune

Weydahl, Torleif; Teigland, Even Kristian; Hak, Claudia; Lopez-Aparicio, Susana; Sousa Santos, Gabriela; Grythe, Henrik; Hamer, Paul David; Vo, Dam Thanh; Vallejo, Islen; Høiskar, Britt Ann Kåstad

2022

Long-range transport of pesticides in aerosols over Europe

Mayer, Ludovic; Senk, Petr; Kukučka, Petr; Přibylová, Petra; Durand, Amandine; Ravier, Sylvain; Alastuey, Andres; Bohlin-Nizzetto, Pernilla; Ceburnis, Darius; Conil, Sébastien; Degorska, Anna; Eleftheriadis, Konstantinos; Forster, Grant; Freier, Korbinian; Gheusi, Francois; Smejkalova, Adeala Holubova; Horrak, Urmas; Hueglin, Christoph; Junninen, Heikki; Kristensson, Adam; Lien, Olav; Lyngra, Reidar; Makkonen, Ulla; Mihalopoulos, Nikos; Mináriková, Veronika; Moche, Wolfgang; Petäjä, Tuukka; Pont, Veronique; Poulain, Laurent; Quivet, Etienne; Reimann, Stefan; Simmons, Ivan; Spoor, Ronald; Tørseth, Kjetil; Wortham, Henri; Yela, Margarita; Zellweger, Claudia; Laj, Paolo; Klánová, Jana; Lammel, Gerhard; Degrendele, Celine

2022

Poly- and Perfluoroalkyl Substances (PFAS) in a Firn Core From Austfonna, Svalbard

Hermanson, Mark H.; Isaksson, Elisabeth; Eckhardt, Sabine; Gabrielsen, Geir W.

2022

Differences in Trophic Level, Contaminant Load, and DNA Damage in an Urban and a Remote Herring Gull (Larus argentatus) Breeding Colony in Coastal Norway

Keilen, Ellen Kristine; Borgå, Katrine; Thorstensen, Helene Skjeie; Hylland, Ketil; Helberg, Morten; Warner, Nicholas Alexander; Bæk, Kine; Reiertsen, Tone Kristin; Ruus, Anders

Herring gulls (Larus argentatus) are opportunistic feeders, resulting in contaminant exposure depending on area and habitat. We compared contaminant concentrations and dietary markers between two herring gull breeding colonies with different distances to extensive human activity and presumed contaminant exposure from the local marine diet. Furthermore, we investigated the integrity of DNA in white blood cells and sensitivity to oxidative stress. We analyzed blood from 15 herring gulls from each colony—the urban Oslofjord near the Norwegian capital Oslo in the temperate region and the remote Hornøya island in northern Norway, on the Barents Sea coast. Based on d13C and d34S, the dietary sources of urban gulls differed, with some individuals having a marine and others a more terrestrial dietary signal. All remote gulls had a marine dietary signal and higher relative trophic level than the urban marine feeding gulls. Concentrations (mean ± standard deviation [SD]) of most persistent organic pollutants, such as polychlorinated biphenyl ethers (PCBs) and perfluorooctane sulfonic acid (PFOS), were higher in urban marine (PCB153 17 ± 17 ng/g wet weight, PFOS 25 ± 21 ng/g wet wt) than urban terrestrial feeders (PCB153 3.7 ± 2.4 ng/g wet wt, PFOS 6.7 ± 10 ng/g wet wt). Despite feeding at a higher trophic level (d15N), the remote gulls (PCB153 17 ± 1221 ng/g wet wt, PFOS 19 ± 1421 ng/g wet wt) were similar to the urban marine feeders. Cyclic volatile methyl siloxanes were detected in only a few gulls, except for decamethylcyclopentasiloxane in the urban colony, which was found in 12 of 13 gulls. Only hexachlorobenzene was present in higher concentrations in the remote (2.6 ± 0.42 ng/g wet wt) compared with the urban colony (0.34 ± 0.33 ng/g wet wt). Baseline and induced DNA damage (doublestreak breaks) was higher in urban than in remote gulls for both terrestrial and marine feeders.

Pergamon Press

2022

An actionable annotation scoring framework for gas chromatography-high-resolution mass spectrometry

Koelmel, Jeremy P.; Xie, Hongyu; Price, Elliott J.; Lin, Elizabeth; Manz, Katherine E.; Stelben, Paul J.; Paige, Matthew K.; Papazian, Stefano; Okeme, Joseph; Jones, Dean P.; Barupal, Dinesh Kumar; Bowden, John; Rostkowski, Pawel Marian; Pennell, Kurt D.; Nikiforov, Vladimir; Wang, Thanh; Hu, Xin; Lai, Yunjia; Miller, Gary W.; Walker, Douglas; Martin, Jonathan W.; Pollitt, Krystal J. Godri

Omics-based technologies have enabled comprehensive characterization of our exposure to environmental chemicals (chemical exposome) as well as assessment of the corresponding biological responses at the molecular level (eg, metabolome, lipidome, proteome, and genome). By systematically measuring personal exposures and linking these stimuli to biological perturbations, researchers can determine specific chemical exposures of concern, identify mechanisms and biomarkers of toxicity, and design interventions to reduce exposures. However, further advancement of metabolomics and exposomics approaches is limited by a lack of standardization and approaches for assigning confidence to chemical annotations. While a wealth of chemical data is generated by gas chromatography high-resolution mass spectrometry (GC-HRMS), incorporating GC-HRMS data into an annotation framework and communicating confidence in these assignments is challenging. It is essential to be able to compare chemical data for exposomics studies across platforms to build upon prior knowledge and advance the technology. Here, we discuss the major pieces of evidence provided by common GC-HRMS workflows, including retention time and retention index, electron ionization, positive chemical ionization, electron capture negative ionization, and atmospheric pressure chemical ionization spectral matching, molecular ion, accurate mass, isotopic patterns, database occurrence, and occurrence in blanks. We then provide a qualitative framework for incorporating these various lines of evidence for communicating confidence in GC-HRMS data by adapting the Schymanski scoring schema developed for reporting confidence levels by liquid chromatography HRMS (LC-HRMS). Validation of our framework is presented using standards spiked in plasma, and confident annotations in outdoor and indoor air samples, showing a false-positive rate of 12% for suspect screening for chemical identifications assigned as Level 2 (when structurally similar isomers are not considered false positives). This framework is easily adaptable to various workflows and provides a concise means to communicate confidence in annotations. Further validation, refinements, and adoption of this framework will ideally lead to harmonization across the field, helping to improve the quality and interpretability of compound annotations obtained in GC-HRMS.

Oxford University Press

2022

Beregning av korrosjonsklasse fra miljøparametere i Fitjar. Lokasjon (59°56’11.5″N 5°19’58.4″Ø)

Grøntoft, Terje

Korrosjonsklasse ble beregnet på lokasjon (59°56'11.5"N 5°19'58.4"Ø) i Fitjar, Vestland, Norge, fra årsgjennomsnitt for miljøparametere etter ISO 9223 og ISO 12944-2. Det ble funnet at korrosjonsklassen med høy sannsynlighet er C3 og at dette i hovedsak er bestemt av våt-tiden på omtrent 4500 timer/år, som gjennomsnitt i perioden 2007-2022. Dette er godt innenfor grensene for C3 når saltavsetningen er < 60 mg Cl-/m2døgn og SO2 konsentrasjonen i luft < 30 µg/m3. Disse betingelsene synes med stor sannsynlighet oppfylt på lokasjonen i Fitjar som årsgjennomsnitt i normalår.

NILU

2022

Hazard identification of nanomaterials: in silico unravelling of descriptors for cytotoxicity and genotoxicity

El Yamani, Naouale; Mariussen, Espen; Dusinska, Maria; Rundén-Pran, Elise; Maciej, Gromelski; Wyrzykowska, Ewelina; Puzyn, Tomasz

2022

Publication
Year
Category