Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 9746 publications. Showing page 348 of 390:

Publication  
Year  
Category

Are poly(anhydride) nanoparticles really safe?

Alonso, T.I.; El Yamani, N.; Dusinska, M.; Salsamendi, A.L.; Oscoz, A.A.

2016

Are parents driving air pollution at schools?

Grythe, Henrik; Sousa Santos, Gabriela; Castell, Nuria

2024

Are Ingredients of Personal Care Products Likely to Undergo Long Range Transport to Remote Regions?

D'Amico, Marianna; Frank, Wania; Breivik, Knut; Gambaro, Andrea; Vecchiato, Marco

2023

Are Fluoropolymers Really of Low Concern for Human and Environmental Health and Separate from Other PFAS?

Lohmann, Rainer; Cousins, Ian T.; DeWitt, Jamie; Glüge, Juliane; Goldenman, Gretta; Herzke, Dorte; Lindstrom, Andrew B.; Miller, Mark F.; Ng, Carla A.; Patton, Sharyle; Scheringer, Martin; Trier, Xenia; Wang, Zhanyun

2020

Arctic winter 2005: Implications for stratospheric ozone loss and climate change.

Rex, M.; Salawitch, R.J.; Deckelmann, H.; von der Gathen, P.; Harris, N.R.P.; Chipperfield, M.P.; Naujokat, B.; Reimer, E.; Allaart, M.; Andersen, S.B.; Bevilacqua, R.; Braathen, G.O.; Claude, H.; Davis, J.; De Backer, H.; Dier, H.; Dorokhov, V.; Fast, H.; Gerding, M.; Godin-Beekmann, S.; Hoppel, K.; Johnson, B.; Kyrö, E.; Litynska, Z.; Moore, D.; Nakane, H.; Parrondo, M.C.; Risley, A.D.; Skrivankova, P.; Stübi, R.; Viatte, P.; Yushkov, V.; Zerefos, C.

2006

Arctic tropospheric ozone: assessment of current knowledge and model performance

Whaley, Cynthia; Law, Kathy S.; Hjorth, Jens Liengaard; Skov, Henrik; Arnold, Stephen R.; Langner, Joakim; Pernov, Jakob Boyd; Bergeron, Garance; Bourgeois, Ilann; Christensen, Jesper H.; Chien, Rong-You; Deushi, Makoto; Dong, Xinyi; Effertz, Peter; Faluvegi, Gregory; Flanner, Mark G.; Fu, Joshua S.; Gauss, Michael; Huey, Greg L.; Im, Ulas; Kivi, Rigel; Marelle, Louis; Onishi, Tatsuo; Oshima, Naga; Petropavlovskikh, Irina; Peischl, Jeff; Plummer, David A.; Pozzoli, Luca; Raut, Jean-Christophe; Ryerson, Tom; Skeie, Ragnhild Bieltvedt; Solberg, Sverre; Thomas, Manu Anna; Thompson, Chelsea R.; Tsigaridis, Kostas; Tsyro, Svetlana; Turnock, Steven T.; von Salzen, Knut; Tarasick, David

As the third most important greenhouse gas (GHG) after carbon dioxide (CO2) and methane (CH4), tropospheric ozone (O3) is also an air pollutant causing damage to human health and ecosystems. This study brings together recent research on observations and modeling of tropospheric O3 in the Arctic, a rapidly warming and sensitive environment. At different locations in the Arctic, the observed surface O3 seasonal cycles are quite different. Coastal Arctic locations, for example, have a minimum in the springtime due to O3 depletion events resulting from surface bromine chemistry. In contrast, other Arctic locations have a maximum in the spring. The 12 state-of-the-art models used in this study lack the surface halogen chemistry needed to simulate coastal Arctic surface O3 depletion in the springtime; however, the multi-model median (MMM) has accurate seasonal cycles at non-coastal Arctic locations. There is a large amount of variability among models, which has been previously reported, and we show that there continues to be no convergence among models or improved accuracy in simulating tropospheric O3 and its precursor species. The MMM underestimates Arctic surface O3 by 5 % to 15 % depending on the location. The vertical distribution of tropospheric O3 is studied from recent ozonesonde measurements and the models. The models are highly variable, simulating free-tropospheric O3 within a range of ±50 % depending on the model and the altitude. The MMM performs best, within ±8 % for most locations and seasons. However, nearly all models overestimate O3 near the tropopause (∼300 hPa or ∼8 km), likely due to ongoing issues with underestimating the altitude of the tropopause and excessive downward transport of stratospheric O3 at high latitudes. For example, the MMM is biased high by about 20 % at Eureka. Observed and simulated O3 precursors (CO, NOx, and reservoir PAN) are evaluated throughout the troposphere. Models underestimate wintertime CO everywhere, likely due to a combination of underestimating CO emissions and possibly overestimating OH. Throughout the vertical profile (compared to aircraft measurements), the MMM underestimates both CO and NOx but overestimates PAN. Perhaps as a result of competing deficiencies, the MMM O3 matches the observed O3 reasonably well. Our findings suggest that despite model updates over the last decade, model results are as highly variable as ever and have not increased in accuracy for representing Arctic tropospheric O3.

2023

Arctic Tropospheric Ozone Trends

Law, Kathy S.; Hjorth, Jens Liengaard; Pernov, Jakob B.; Whaley, Cynthia; Skov, Henrik; Coen, Martine Collaud; Langner, Joakim; Arnold, Stephen R.; Tarasick, David; Christensen, Jesper; Deushi, Makoto; Effertz, Peter; Faluvegi, Greg; Gauss, Michael; Im, Ulas; Oshima, Naga; Petropavlovskikh, Irina; Plummer, David; Tsigaridis, Kostas; Tsyro, Svetlana; Solberg, Sverre; Turnock, Stephen

Observed trends in tropospheric ozone, an important air pollutant and short-lived climate forcer (SLCF), are estimated using available surface and ozonesonde profile data for 1993–2019, using a coherent methodology, and compared to modeled trends (1995–2015) from the Arctic Monitoring Assessment Program SLCF 2021 assessment. Increases in observed surface ozone at Arctic coastal sites, notably during winter, and concurrent decreasing trends in surface carbon monoxide, are generally captured by multi-model median trends. Wintertime increases are also estimated in the free troposphere at most Arctic sites, with decreases during spring months. Winter trends tend to be overestimated by the multi-model medians. Springtime surface ozone increases in northern coastal Alaska are not simulated while negative springtime trends in northern Scandinavia are not always reproduced. Possible reasons for observed changes and model performance are discussed including decreasing precursor emissions, changing ozone dry deposition, and variability in large-scale meteorology.

American Geophysical Union (AGU)

2023

Arctic transport climatologies for the International Arctic System for Observing the Atmosphere (IASOA) and POLARCAT.

Burkhart, J.F.; John, B.F.; Stohl, A.; Eckhardt, S.; Uttal, T.; Ocko, I.; Tørseth, K.

2007

Arctic springtime depletion of mercury increases the input of mercury to the ecosystems.

Berg, T.; Sekkeseter, S.; Steinnes, E.; Valdal, A.; Wibetoe, G.

2002

Arctic springtime depletion of mercury as observed in the European Arctic.

Berg, T.; Sekkesæter, S.; Steinnes, E.; Vandal, A.; Wibetoe, G.

2001

Arctic smoke - record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe.

Stohl, A.; Berg, T.; Burkhart, J.F.; Fjæraa, A.M.; Forster, C.; Herber, A.; Hov, Ø.; Lunder, C.; McMillan, W.W.; Oltmans, S.; Shiobara, M.; Simpson, D.; Solberg, S.; Stebel, K.; Ström, J.; Tørseth, K.; Treffeisen, R.; Virkkunen, K.; Yttri, K.E.

2007

Arctic smoke - aerosol characteristics during a record smoke event in the European Arctic and its radiative impact.

Treffeisen, R.; Tunved, P.; Ström, J.; Herber, A.; Bareiss, J.; Helbig, A.; Stone, R.S.; Hoyningen-Huene, W.; Krejci, R.; Stohl, A.; Neuber, R.

2007

Arctic sea-ice loss intensifies aerosol transport to the Tibetan Plateau

Li, Fei; Wan, Xin; Wang, Huijun; Orsolini, Yvan J.; Cong, Zhiyuan; Gao, Yongqi; Kang, Shichang

2020

Arctic Sea-Ice Loss Intensifies Aerosol Transport to the Tibetan Plateau

Li, Fei; Wang, Huijun; Orsolini, Yvan J.; Cong, Zhiyuan; Gao, Yongqi; Kang, Shichang

2021

Arctic POPs. NILU OR

Heimstad, E.S.; Herzke, D.

2004

Arctic POPs 2001-2003. NILU F

Heimstad, E.S.

2003

Arctic pollution 2011.

Ravilious, K.; NILU contributors: Pacyna, J.; Sandanger, T.M.; Sundseth, K.

2011

Arctic peat fire emissions estimated from satellite observations of fire radiative power

Kaiser, Johannes; Stebel, Kerstin; Schneider, Philipp; Huijnen, Vincent

2024

Arctic Peat and Forest Fires Look from Sentinel-5P

Aun, Margit; George, Jan-Peter; Stebel, Kerstin

2024

Arctic Monitoring and Assessment Programme (AMAP) - IPY Meeting in Iqaluit, Nunavut, Canada (June 2009), and AMAP Human Health Assessment 2009. From pole to pole

Hansen, J. C.; Van Oostdam, J.; Gilman, A. P.; Odland, J. Ø.; Donaldson, S. G.; Vaktskjold, A.; Tikhonov, C.; Dudarev, A. A.; Ayotte, P.; Berner, J. E.; Bonefeld-Jørgensen, E. C.; Carlsen, A.; Deutch, B.; Dewailly, E.; Furgal, C.; Muckle, G.; Ólafsdóttir, K.; Pedersen, H. S.; Rautio, A.; Sandanger, T. M.; Weihe, P.; Weber, J.-P.; Savolainen, M.; Skinner, K.

2016

Arctic moisture source for Eurasian snow cover variations in autumn.

Wegmann, M.; Orsolini, Y.; Vazquez, M.; Gimeno, L.; Nieto, R.; Bulygina, O.; Jaiser, R.; Handorf, D.; Rinke, A.; Dethloff, K.; Sterin, A.; Brönnimann, S.

2015

Arctic moisture source for Eurasian snow cover variations in autumn.

Wegmann, M.; Orsolini, Y.; Vazquez, M.; Gimeno, L.; Nieto, R.; Bulygina, O.; Jaiser, R.; Handorf, D.; Rinke, A.; Dethloff, K.; Sterin, A.; Brönnimann, S.

2015

Publication
Year
Category