Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 9746 publications. Showing page 374 of 390:

Publication  
Year  
Category

Ag and TiO2 nanoparticles: effects on model aquatic organisms.

Georgantzopoulou, A.; Dusinska, M.; Kruszewski, M.; Balachandran, Y.L.; Audinot, J.N.; Hoffmann, L., Gutleb, A.C.

2011

Aerosols pollution level detection using Optical Particle Sensors in four Cities in Serbia: Low-Cost v.s. Equivalent PM Monitor

Jovašević-Stojanović, Milena; Bartonova, Alena; Kleut, D.; Živković, M.; Lazović, I.; De Vito, S.; Stojanović, D. B.; Ristovski, Z.; Davidović, M.

2023

Aerosols in polar regions: A historical overview based on optical depth and in situ observations.

Tomasi, C.; Vitale, V.; Lupi, A.; Di Carmine, C.; Campanelli, M.; Herber, A.; Treffeisen, R.; Stone, R.S.; Andrews, E.; Sharma, S.; Radionov, V.; von Hoyningen-Huene, W.; Stebel, K.; Hansen, G.H.; Myhre, C.L.; Wehrli, C.; Aaltonen, V.; Lihavainen, H.; Virkkula, A.; Hillamo, R.; Ström, J.; Toledano, C.; Cachorro, V.E.; Ortiz, P.; de Frutos, A.M.; Blindheim, S.; Frioud, M.; Gausa, M.; Zielinski, T.; Petelski, T.; Yamanouchi, T.

2007

Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS): The European Research Infrastructure Supporting Atmospheric Science

Laj, Paolo; Myhre, Cathrine Lund; Riffault, Véronique; Amiridis, Vassilis; Fuchs, Hendrik; Eleftheriadis, Konstantinos; Petäjä, Tuukka; Salameh, Therese; Kivekäs, Niku; Juurola, Eija; Saponaro, Giulia; Philippin, Sabine; Cornacchia, Carmela; Arboledas, Lucas Alados; Baars, Holger; Claude, Anja; De Mazière, Martine; Dils, Bart; Dufresne, Marvin; Evangeliou, Nikolaos; Favez, Olivier; Fiebig, Markus; Haeffelin, Martial; Herrmann, Hartmut; Höhler, Kristina; Illmann, Niklas; Kreuter, Axel; Ludewig, Elke; Marinou, Eleni; Möhler, Ottmar; Mona, Lucia; Murberg, Lise Eder; Nicolae, Doina; Novelli, Anna; O'Connor, Ewan; Ohneiser, Kevin; Altieri, Rosa Maria Petracca; Picquet-Varrault, Benedicte; van Pinxteren, Dominik; Pospichal, Bernhard; Putaud, Jean-Philippe; Reimann, Stefan; Siomos, Nikolaos; Stachlewska, Iwona S.; Tillmann, Ralf; Voudouri, Kalliopi Artemis; Wandinger, Ulla; Wiedensohler, Alfred; Apituley, Arnoud; Comerón, Adolfo; Gysel-Beer, Martin; Mihalopoulos, Nikolaos; Nikolova, Nina; Pietruczuk, Aleksander; Sauvage, Stéphane; Sciare, Jean; Skov, Henrik; Svendby, Tove Marit; Swietlicki, Erik; Tonev, Dimitar; Vaughan, Geraint; Zdimal, Vladimir; Baltensperger, Urs; Doussin, Jean-François; Kulmala, Markku; Pappalardo, Gelsomina; Sundet, Sanna Sorvari; Vana, Milan

The Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS) officially became the 33rd European Research Infrastructure Consortium (ERIC) on April 25, 2023 with the support of 17 founding member and observer countries. As a pan-European legal organization, ACTRIS ERIC will coordinate the provision of data and data products on short-lived atmospheric constituents and clouds relevant to climate and air pollution over the next 15-20 years. ACTRIS was designed more than a decade ago, and its development was funded at national and European levels. It was included in the European Strategy Forum on Research Infrastructures (ESFRI) Roadmap in 2016 and subsequently, in the national infrastructure roadmaps of European countries. It became a landmark of the ESFRI roadmap in 2021. The purpose of this paper is to describe the mission of ACTRIS, its added value to the community of atmospheric scientists, providing services to academia as well as the public and private sectors, and to summarize its main achievements. The present publication serves as a reference document for ACTRIS, its users and the scientific community as a whole. It provides the reader with relevant information and an overview on ACTRIS governance and services, as well as a summary of the main scientific achievements of the last 20 years. The paper concludes with an outlook on the upcoming challenges for ACTRIS and the strategy for its future evolution.

American Meteorological Society

2024

Aerosol-cloud interaction inferred from MODIS satellite data and global aerosol models.

Myhre, G.; Stordal, F.; Johnsrud, M.; Kaufman, Y.J.; Rosenfeld, D.; Storelvmo, T.; Kristjansson, J.E.; Berntsen, T.K.; Myhre, A.; Isaksen, I.S.A.

2007

Aerosol-boundary layer feedbacks triggered by both greenhouse gas and aerosol emissions

Stjern, Camilla Weum; Hodnebrog, Øivind; Myhre, Gunnar; Pisso, Ignacio

2022

Aerosol size distribution, hygroscopicity and cloud formation from fall to spring at an Arctic Mountain site

Motos, Ghislain; Georgakaki, Paraskevi; Wieder, Jörg; Freitas, Gabriel; Krejci, Radovan; Mohr, Claudia; Zieger, Paul; Aas, Wenche; Lohmann, Ulrike; Nenes, Athanasios

2022

Aerosol remote sensing in polar regions.

Tomasi, C.; Kokhanovsky, A. A.; Lupi, A.; Ritter, C.; Smirnov, A.; O'Neill, N. T.; Stone, R. S.; Holben, B. N.; Nyeki, S.; Wehrli, C.; Stohl, A.; Mazzola, M.; Lanconelli, C.; Vitale, V.; Stebel, K.; Aaltonen, V.; de Leeuw, G.; Rodriguez, E.; Herber, A. B.; Radionov, V. F.; Zielinski, T.; Petelski, T.; Sakerin, S. M.; Kabanov, D. M.; Xue, Y.; Mei, L.; Istomina, L.; Wagener, R.; McArthur, B.; Sobolewski, P. S.; Kivi, R.; Courcoux, Y.; Larouche, P.; Broccardo, S.; Piketh, S. J.

2015

Aerosol radiative forcing from the Eyjafjallajökull volcanic eruptions. NILU F

Flanner, M.G.; Gardner, A.S.; Stohl, A.; Eckhardt, S.; Kristiansen, N.

2013

Aerosol radiative forcing from the 2010 Eyjafjallajökull volcanic eruptions.

Flanner, M.G.; Gardner, A.S.; Eckhardt, S.; Stohl, A.; Perket, J.

2014

Aerosol properties of the Eyjafjallajökull ash derived from sun photometer and satellite observations over the Iberian Peninsula.

Toledano, C.; Bennouna, Y.; Cachorro, V.; Ortiz de Galisteo, J.P.; Stohl, A.; Stebel, K.; Kristiansen, N.I.; Olmo, F.J.; Lyamani, H.; Obregón, M.A.; Estellés, V.; Wagner, F.; Baldasano, J.M.; González-Castanedo, Y.; Clarisse, L.; de Frutos, A.M.

2012

Aerosol properties in the European Arctic region. NILU PP

Myhre, C.L.; Stebel, K.; Toledano, C.; Schaug, J.; de Frutos, A.M.; Cachorro, V.E.; Hansen, G.

2006

Aerosol particles in the Baroque Hall of the National Library in Prague.

Smolik, J.; Maskova, L.; Ondrackova, L.; Ondracek, J.; Souckova, M.; Stankiwicz, J.; Lopez-Aparicio, S.; Grøntoft, T.; Zikova, N.

2010

Aerosol particle measurements at three stationary sites in the megacity of Paris during summer 2009: meteorology and air mass origin dominate aerosol particle composition and size distribution.

Freutel, F.; Schneider, J.; Drewnick, F.; von der Weiden-Reinmüller, S.-L.; Crippa, M.; Prévôt, A. S. H.; Baltensperger, U.; Poulain, L.; Wiedensohler, A.; Sciare, J.; Sarda-Estève, R.; Burkhart, J. F.; Eckhardt, S.; Stohl, A.; Gros, V.; Colomb, A.; Michoud, V.; Doussin, J. F.; Borbon, A.; Haeffelin, M.; Morille, Y.; Beekmann, M.; Borrmann, S.

2013

Aerosol optical properties obtained from tropospheric lidar and sun photometer measurements in 2005 and 2006 at ALOMAR (69°N, 16°E). NILU PP

Stebel, K.; Friod, M.; Myhre, C.L.; Toledano, C.; Hansen, G.; Gausa, M.; Mogo, S.; Rodriguez, E.; de Frutos, A.; Cachorro, V.; Kristjansson, J.E.

2007

Aerosol optical properties in Northern Norway and Svalbard.

Chen, Y.-C.; Hamre, B.; Frette, Ø.; Muyimbwa, D.; Blindheim, S.; Stebel, K.; Sobolewski, P.; Toledano, C.; Stamnes, J.J.

2016

Aerosol optical properties from tropospheric lidar and sun photometer during the GOA Aerosol Arctic Campaigns 2005 and 2006 at ALOMAR. Poster presentation. NILU F

Bastidas, Á.; Rodríguez, E.; Frioud, M.; Gausa, M.; Stebel, K.; Prats, N.; Mogo, S.; Torres, B.; Toledano, C.; Berjón, A.; Cachorro, V.; de Frutos, Á.M.

2007

Aerosol optical properties calculated from size distributions, filter samples and absorption photometer data at Dome C, Antarctica, and their relationships with seasonal cycles of sources

Virkkula, Aki; Grythe, Henrik; Backman, John; Petäjä, Tuukka; Busetto, Maurizio; Lanconelli, Christian; Lupi, Angelo; Becagli, Silvia; Traversi, Rita; Severi, Mirko; Vitale, Vito; Sheridan, Patrick; Andrews, Elisabeth

Optical properties of surface aerosols at Dome C, Antarctica, in 2007–2013 and their potential source areas are presented. Scattering coefficients (σsp) were calculated from measured particle number size distributions with a Mie code and from filter samples using mass scattering efficiencies. Absorption coefficients (σap) were determined with a three-wavelength Particle Soot Absorption Photometer (PSAP) and corrected for scattering by using two different algorithms. The scattering coefficients were also compared with σsp measured with a nephelometer at the South Pole Station (SPO). The minimum σap was observed in the austral autumn and the maximum in the austral spring, similar to other Antarctic sites. The darkest aerosol, i.e., the lowest single-scattering albedo ωo≈0.91, was observed in September and October and the highest ωo≈0.99 in February and March. The uncertainty of the absorption Ångström exponent αap is high. The lowest αap monthly medians were observed in March and the highest in August–October. The equivalent black carbon (eBC) mass concentrations were compared with eBC measured at three other Antarctic sites: the SPO and two coastal sites, Neumayer and Syowa. The maximum monthly median eBC concentrations are almost the same ( ng m−3) at all these sites in October–November. This suggests that there is no significant difference in eBC concentrations between the coastal and plateau sites. The seasonal cycle of the eBC mass fraction exhibits a minimum f(eBC) ≈0.1 % in February–March and a maximum ∼4 %–5 % in August–October. Source areas were calculated using 50 d FLEXPART footprints. The highest eBC concentrations and the lowest ωo were associated with air masses coming from South America, Australia and Africa. Vertical simulations that take BC particle removal processes into account show that there would be essentially no BC particles arriving at Dome C from north of latitude 10∘ S at altitudes

2022

Publication
Year
Category