Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 9746 publications. Showing page 389 of 390:

Publication  
Year  
Category

Modelling Arctic Atmospheric Aerosols: Representation of Aerosol Processing by Ice and Mixed-Phase Clouds

Gong, Wanmin; Stephen, Beagley; Ghahreman, Roya; Sharma, Sangeeta; Huang, Lin; Quinn, Patricia K.; Massling, Andreas; Pernov, Jakob Boyd; Skov, Henrik; Calzolai, Giulia; Traversi, Rita; Aas, Wenche; Yttri, Karl Espen; Vestenius, Mika; Makkonen, Ulla; Kivekäs, Niku; Kulmala, Markku; Alto, Pasi; Fiebig, Markus

2025

The ANALYST project: Strengthening the integrated approach of holistic impact assessments for Safe and Sustainable by design plastic value chain

Longhin, Eleonora Marta; Murugadoss, Sivakumar; Olsen, Ann-Karin Hardie; SenGupta, Tanima; Rundén-Pran, Elise; El Yamani, Naouale; Dusinska, Maria; Lago, Ana; Ferreira, G.

2025

Cyclic volatile methyl siloxanes in the terrestrial and aquatic environment at remote Arctic sites

Nipen, Maja; Hartz, William Frederik; Schulze, Dorothea; Christensen, Guttorm; Løge, Oda Siebke; Nikiforov, Vladimir; Bohlin-Nizzetto, Pernilla

Cyclic volatile methyl siloxanes (cVMS) are widely used chemicals with high emissions to the atmosphere due to their volatility. They are found in the Arctic atmosphere, indicating potential for long-range transport. This study examined the potential for deposition of cVMS (D4, D5, D6) to surface media via snow in Arctic regions. Results showed low cVMS levels in vegetation, soil, sediment, and marine biota. D4 was detected above detection limits but generally below quantification limits, while D5 and D6 were generally not detected. This aligns with current research, suggesting negligible cVMS input from atmospheric deposition via snow and snow melt.

NILU

2025

Duftlys sammenlignes med gasskomfyrer: – Kan bli farlig

Håland, Alexander; Nordby, Karl-Christian; Olsen, Raymond (interview subjects); Alfonzo, Sabrina (journalist)

2025

Arctic food and energy security at the crossroads

Unc, Adrian; Najm, Majdi R. Abou; Aspholm, Paul Eric; Bolisetti, Tirupati; Charles, Colleen; Datta, Ranjan; Eggen, Trine; Flem, Belinda Eline; Hailu, Getu; Heimstad, Eldbjørg Sofie; Hurlbert, Margot; Karlsson, Meriam; Korsnes, Marius Støylen; Nash, Arthur; Parsons, David; Sajeevan, Radha Sivarajan; Shurpali, Narasinha J.; Valkenburg, Govert; Wilde, Danielle; Wu, Bing; Yanni, Sandra F.; Misra, Debasmita

Springer Nature

2025

I vinterferien blir luftkvaliteten nær skolene bedre

Ruud, Ingunn Marie

Norges forskningsråd

2025

Unchanged PM2.5 levels over Europe during COVID-19 were buffered by ammonia

Evangeliou, Nikolaos; Tichý, Ondřej; Otervik, Marit Svendby; Eckhardt, Sabine; Balkanski, Yves; Hauglustaine, Didier A.

The coronavirus outbreak in 2020 had a devastating impact on human life, albeit a positive effect on the environment, reducing emissions of primary aerosols and trace gases and improving air quality. In this paper, we present inverse modelling estimates of ammonia emissions during the European lockdowns of 2020 based on satellite observations. Ammonia has a strong seasonal cycle and mainly originates from agriculture. We further show how changes in ammonia levels over Europe, in conjunction with decreases in traffic-related atmospheric constituents, modulated PM2.5. The key result of this study is a −9.8 % decrease in ammonia emissions in the period of 15 March–30 April 2020 (lockdown period) compared to the same period in 2016–2019, attributed to restrictions related to the global pandemic. We further calculate the delay in the evolution of the ammonia emissions in 2020 before, during, and after lockdowns, using a sophisticated comparison of the evolution of ammonia emissions during the same time periods for the reference years (2016–2019). Our analysis demonstrates a clear delay in the evolution of ammonia emissions of −77 kt, which was mainly observed in the countries that imposed the strictest travel, social, and working measures. Despite the general drop in emissions during the first half of 2020 and the delay in the evolution of the emissions during the lockdown period, satellite and ground-based observations showed that the European levels of ammonia increased. On one hand, this was due to the reductions in SO2 and NOx (precursors of the atmospheric acids with which ammonia reacts) that caused less binding and thus less chemical removal of ammonia (smaller loss – higher lifetime). On the other hand, the majority of the emissions persisted because ammonia mainly originates from agriculture, a primary production sector that was influenced very little by the lockdown restrictions. Despite the projected drop in various atmospheric aerosols and trace gases, PM2.5 levels stayed unchanged or even increased in Europe due to a number of reasons that were attributed to the complicated system. Higher water vapour during the European lockdowns favoured more sulfate production from SO2 and OH (gas phase) or O3 (aqueous phase). Ammonia first reacted with sulfuric acid, also producing sulfate. Then, the continuously accumulating free ammonia reacted with nitric acid, shifting the equilibrium reaction towards particulate nitrate. In high-free-ammonia atmospheric conditions such as those in Europe during the 2020 lockdowns, a small reduction in NOx levels drives faster oxidation toward nitrate and slower deposition of total inorganic nitrate, causing high secondary PM2.5 levels.

2025

Intercorrelations of short-, medium- and long-chain chlorinated paraffins, dechloranes and legacy POPs in 10 species of marine mammals from Norway, in light of dietary niche

Andvik, Clare Margaret; Jourdain, Eve Marie; Borgen, Anders; Lyche, Jan Ludvig; Karoliussen, Richard; Haug, Tore; Borgå, Katrine

2025

Modelling the Transport Externalities of Urban Sprawl Development in Polish Cities Between 2006 and 2023

Drabicki, Arkadiusz; Lopez-Aparicio, Susana; Grythe, Henrik; Kierpiec, Urszula; Tobola, Kamila; Kud, Bartosz; Chwastek, Konrad

2025

Forskeren som oppdaget sur nedbør: Trump kan gjøre det til et problem igjen

Aas, Wenche (interview subject); Borgan, Eldrid (journalist)

2025

Understanding the origins of urban particulate matter pollution based on high-density vehicle-based sensor monitoring and big data analysis

Liang, Yiheng; Wang, Xiaohua; Dong, Zhongzhen; Wang, Xinfeng; Wang, Shidong; Si, Shuchun; Wang, Jing; Liu, Hai Ying; Zhang, Qingzhu; Wang, Qiao

2025

Inverse modeling of 137Cs during Chernobyl 2020 wildfires without the first guess

Tichý, Ondřej; Evangeliou, Nikolaos; Selivanova, Anna; Šmídl, Václav

Elsevier

2025

Nanoplast funnet i isbreer

Solbakken, Christine Forsetlund

Norges forskningsråd

2025

Ongoing NILU activities relevant for LSTM and CHIME

Schneider, Philipp; Stebel, Kerstin; Hassani, Amirhossein; Kylling, Arve

2025

A pooled analysis of host factors that affect nucleotide excision repair in humans

Zheng, Congying; Shaposhnikov, Sergey; Collins, Andrew; Brunborg, Gunnar; Azqueta, Amaya; Langie, Sabine A.S.; Dusinska, Maria; Slyskova, Jana; Vodicka, Pavel; van Schooten, Frederik-Jan; Bonassi, Stefano ; Milic, Mirta; Orlow, Irene; Godschalk, Roger

Oxford University Press

2025

Ny forskning viser at duftvoks kan være helseskadelig

Håland, Alexander; Platt, Stephen Matthew (interview subjects); Johansen, Emil (journalist)

2025

Best Practice Protocol for the validation of Aerosol, Cloud, and Precipitation Profiles (ACPPV)

Vassilis, Amiridis; Marinou, Eleni; Hostetler, Chris; Koopman, Rob; Cecil, Daniel; Moisseev, Dmitri; Tackett, Jason; Gross, Silke; Baars, Holger; Redemann, Jens; Marenco, Franco; Baldini, Luca; Tanelli, Simone; Fielding, Mark; Janisková, Marta; Tanaka, Toshiyuki; O'Connor, Ewan; Fjæraa, Ann Mari; et al., .

Committee on Earth Observation Satellites - CEOS

2025

Indian Land Carbon Sink Estimated from Surface and GOSAT Observations

Nayagam, Lorna Raja; Maksyutov, Shamil; Janardanan, Rajesh; Oda, Tomohiro; Tiwari, Yogesh K.; Sreenivas, Gaddamidi; Datye, Amey; Jain, Chaithanya D.; Ratnam, Madineni Venkat; Sinha, Vinayak; Hakkim, Haseeb; Terao, Yukio; Naja, Manish; Ahmed, Md. Kawser; Mukai, Hitoshi; Zeng, Jiye; Kaiser, Johannes; Someya, Yu; Yoshida, Yukio

The carbon sink over land plays a key role in the mitigation of climate change by removing carbon dioxide (CO2) from the atmosphere. Accurately assessing the land sink capacity across regions should contribute to better future climate projections and help guide the mitigation of global emissions towards the Paris Agreement. This study estimates terrestrial CO2 fluxes over India using a high-resolution global inverse model that assimilates surface observations from the global observation network and the Indian subcontinent, airborne sampling from Brazil, and data from the Greenhouse gas Observing SATellite (GOSAT) satellite. The inverse model optimizes terrestrial biosphere fluxes and ocean-atmosphere CO2 exchanges independently, and it obtains CO2 fluxes over large land and ocean regions that are comparable to a multi-model estimate from a previous model intercomparison study. The sensitivity of optimized fluxes to the weights of the GOSAT satellite data and regional surface station data in the inverse calculations is also examined. It was found that the carbon sink over the South Asian region is reduced when the weight of the GOSAT data is reduced along with a stricter data filtering. Over India, our result shows a carbon sink of 0.040 ± 0.133 PgC yr−1 using both GOSAT and global surface data, while the sink increases to 0.147 ± 0.094 PgC yr−1 by adding data from the Indian subcontinent. This demonstrates that surface observations from the Indian subcontinent provide a significant additional constraint on the flux estimates, suggesting an increased sink over the region. Thus, this study highlights the importance of Indian sub-continental measurements in estimating the terrestrial CO2 fluxes over India. Additionally, the findings suggest that obtaining robust estimates solely using the GOSAT satellite data could be challenging since the GOSAT satellite data yield significantly varies over seasons, particularly with increased rain and cloud frequency.

MDPI

2025

Revisjon av indikatorer for tilstandsvurdering av miljø og økosystem i norske havområder — Gruppen for overvåking av de marine økosystemene

Skern-Mauritzen, Mette; Andersson, Ingvild; Arneberg, Per; Sanchez-Borque, Jorge; Christensen, Kai Håkon; Danielsen, Ida Kristin; Ersvik, Mihaela; Frantzen, Sylvia; Frie, Anne Kirstine Højholt; Frigstad, Helene; Grøsvik, Bjørn Einar; Gundersen, Kjell; Hanssen, Sveinn Are; Heimstad, Eldbjørg Sofie; Husa, Vivian; Jensen, Henning; Jensen, Louise Kiel; Johansson, Josefina; Johnsen, Hanne; Leiknes, Øystein; Lindeman, Ingunn Hoel; Lorentsen, Svein-Håkon; van der Meeren, Gro Ingleid; Moe, Øyvind Grøner; Mørk, Herdis Langøy; Nesse, Steinar; Anker-Nilsen, Tycho; Bohlin-Nizzetto, Pernilla; Nordgård, Ida Kessel; Pettersson, Lasse; Roland, Rune; Schøyen, Merete; Skjerdal, Hilde Kristin; Stene, Kristine Orset; Thorsnes, Terje; Vee, Ida; Wasbotten, Ingar

Havforskningsinstituttet

2025

Lanternfish as bioindicator of microplastics in the deep sea: A spatiotemporal analysis using museum specimens

Ferreira, Guilherme V.B.; Justino, Anne K.S.; Martins, Júlia R.; Eduardo, Leandro Nolé; Schmidt, Natascha; Albignac, Magali; Braga, Adriana C.; Costa, Paulo A. S.; Fischer, Luciano Gomes; ter Halle, Alexandra; Bertrand, Arnaud; Lucena-Fredou, Flavia; Mincarone, Michael M.

Elsevier

2025

Publication
Year
Category