Found 10179 publications. Showing page 403 of 408:
Forurensning i Arktis kan være opptil 71 ganger høyere i løpet av sommeren sammenlignet med vinteren
2025
Havforskningsinstituttet
2025
Enniatins (ENNs) and beauvericin (BEA) are cyclic hexadepsipeptide fungal metabolites which have demonstrated antibiotic, antimycotic, and insecticidal activities. The substantial toxic potentials of these mycotoxins are associated with their ionophoric molecular properties and relatively high lipophilicities. ENNs occur extensively in grain and grain-derived products and are considered a food safety issue by the European Food Safety Authority (EFSA). The tolerable daily intake and maximum levels for ENNs in humans and animals remain unestablished due to key toxicological and toxicokinetic data gaps, preventing full risk assessment. Aiming to find critical data gaps impeding hazard characterization and risk evaluation, this review presents a comprehensive summary of the existing information from in vitro and in vivo studies on toxicokinetic characteristics and cytotoxic, genotoxic, immunotoxic, endocrine, reproductive and developmental effects of the most prevalent ENN analogues (ENN A, A1, B, B1) and BEA. The missing information identified showed that additional studies on ENNs and BEA have to be performed before sufficient data for an in-depth hazard characterisation of these mycotoxins become available.
2025
2025
Air Quality and Healthy Ageing: Predictive Modelling of Pollutants using CNN Quantum-LSTM
The concept of healthy ageing is emerging and becoming a norm to achieve a high quality of life, reducing healthcare costs and promoting longevity. Rapid growth in global population and urbanisation requires substantial efforts to ensure healthy and supportive environments to improve the quality of life, closely aligned with the principles of healthy ageing. Access to fundamental resources which include quality healthcare services, clean air, green and blue spaces plays a pivotal role in achieving this goal. Air quality, in particular, is a critical factor in achieving healthy ageing targets. However, it necessitates a global effort to develop and implement policies aimed at reducing air pollution, which has severe implications for human health including cognitive impairment and neurodegenerative diseases, while promoting healthier environments such as high quality green and blue spaces for all age groups. Such actions inevitably depend on the current status of air pollution and better predictive models to mitigate the harmful impact of emissions on planetary health and public health. In this work, we proposed a hybrid model referred as AirVCQnet, which combines the variational mode decomposition (VMD) method with a convolutional neural network (CNN) and a quantum long short-term memory (QLSTM) network for the prediction of air pollutants. The performance of the proposed model is analysed on five key pollutants including fine Particulate Matter PM2.5, Nitrogen Dioxide (NO2), Ozone (O3), PM10, and Sulphur Dioxide (SO2), sourced from air quality monitoring station in Northern Ireland, UK. The effectiveness of the proposed model is evaluated by comparing its performance with its equivalent classical counterpart using root mean square error (RMSE), mean absolute error (MAE), and R-squared (R2). The results demonstrate the superiority of the proposed model, achieving a performance gain of up to 14% and validating its robustness, efficiency and reliability by leveraging t.
2025
We propose operational definitions and a classification framework for air quality sensor-derived data, thereby aiding users in interpreting and selecting suitable data products for their applications. We focus on differentiating independent sensor measurements (ISM) from other data products, emphasizing transparency and traceability. Recommendations are provided for manufacturers, academia, and standardization bodies to adopt these definitions, fostering data product differentiation and incentivizing the development of more robust, reliable sensor hardware.
2025
2025
2025
Etablering av vindkraftverk på land kan medføre en risiko for drikkevann når installasjonene ligger i eller nær vanntilsigsområder til drikkevannskilder. Denne rapporten, utarbeidet av VKM på oppdrag fra Mattilsynet, gir Mattilsynet et kunnskapsbasert grunnlag for å stille krav til konsekvensutredninger og detaljplan for å beskytte drikkevannet.
Rapporten identifiserer potensielle farer for kjemisk og fysisk forurensning av drikkevann gjennom hele livsløpet til et vindkraftverk – fra planlegging og anleggsfase, til drift og avvikling. Den beskriver relevante lover og forskrifter, sentrale aktører og deres roller, og legger vekt på når og hvordan Mattilsynet kan involveres og komme med innspill i den kommunale planprosessen etter plan- og bygningsloven og i konsesjonsprosessen etter energiloven som forvaltes av NVE. Det er av stor betydning at Mattilsynet varsles og involveres tidlig i prosessen. Tiltakshaver må sørge for at risiko for forurensning av drikkevann og vanntilsigsområde utredes på en etterprøvbar måte, slik at Mattilsynet kan gi tydelige innspill til utredningen for å sikre at drikkevannshensyn er ivaretatt.
2025
2025
New EU Report Calls For Strict mCDR MRV Rules
A new EU report warns that currently, no mCDR technology has enough proof of CDR performance and impact to be deemed safe for deployment.
2025
Assessing the environmental burden of disease related to air pollution in Europe in 2023
This report evaluates the environmental burden of disease (EBD) linked to long-term exposure to fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) across 41 European countries in 2023. Using the key health indicators—attributable deaths, years of life lost, years lived with disability, and disability-adjusted life years—the analysis quantifies the health impacts of air pollution above concentrations defined as the World Health Organisation’s air quality guideline levels. Approximately 206,000 deaths are attributable to PM2.5, while about 56,000 and 71,000 deaths area attributable to NO2 and O3, respectively. The disease burden from PM2.5 was highest due to its association with multiple health outcomes, with high baseline prevalence and mortality. Results highlight strong regional disparities, with South-Eastern Europe most affected by health effects from PM2.5 and NO2, and Southern Europe by those from O3. Findings underscore the need for targeted policies to reduce pollutant-specific health impacts in Europe.
European Topic Centre on Human Health and the Environment (ETC HE)
2025
2025
2025
Biomass burning emission analysis based on MODIS
We assessed the biomass burning (BB) smoke aerosol optical depth (AOD) simulations of 11 global models that participated in the AeroCom phase III BB emission experiment. By comparing multi-model simulations and satellite observations in the vicinity of fires over 13 regions globally, we (1) assess model-simulated BB AOD performance as an indication of smoke source–strength, (2) identify regions where the common emission dataset used by the models might underestimate or overestimate smoke sources, and (3) assess model diversity and identify underlying causes as much as possible. Using satellite-derived AOD snapshots to constrain source strength works best where BB smoke from active sources dominates background non-BB aerosol, such as in boreal forest regions and over South America and southern hemispheric Africa. The comparison is inconclusive where the total AOD is low, as in many agricultural burning areas, and where the background is high, such as parts of India and China. Many inter-model BB AOD differences can be traced to differences in values for the mass ratio of organic aerosol to organic carbon, the BB aerosol mass extinction efficiency, and the aerosol loss rate from each model. The results point to a need for increased numbers of available BB cases for study in some regions and especially to a need for more extensive regional-to-global-scale measurements of aerosol loss rates and of detailed particle microphysical and optical properties; this would both better constrain models and help distinguish BB from other aerosol types in satellite retrievals. More generally, there is the need for additional efforts at constraining aerosol source strength and other model attributes with multi-platform observations.
2025
Målinger av SO2 i omgivelsene til Elkem Carbon. Kalenderår 2024
På oppdrag fra Elkem Carbon AS har NILU utført målinger av SO2 i omgivelsene til Elkem Carbon i Kristiansand. Målingene ble utført med SO2-monitor i boligområdet på Fiskåtangen (Konsul Wilds vei). I tillegg ble SO2 målt med passive prøvetakere ved 3 steder rundt bedriften. Rapporten dekker målinger i perioden 1. januar – 31. desember 2024. Norske grenseverdier for luftkvalitet (SO2) ble overholdt ved Konsul Wilds vei for alle midlingsperioder (årsmiddel, vintermiddel, døgnmiddel og timemiddel). To døgnmiddelverdier var over nedre vurderingsterskel (50 µg/m3). Passive luftprøver viste at Fiskåveien, rett sør for bedriften, var det mest belastede stedet i måleperioden.
NILU
2025
2025
Wood building materials can be a source of volatile organic compounds (VOCs) in the indoor environment and increasing focus is put on classification and regulation of the use of wood building materials in Europe. The main wood related VOCs such as monoterpenes rarely pose adverse health effects for humans, but as analytical procedures become more sensitive new hazardous VOCs are detected in low concentration. There is a need for comprehensive identification of VOCs emitting from different wood building materials for indoor use. This study performed a first semi-quantitative non-target and suspect screening of VOC emissions from three important wood-based building materials in Europe. Air samples collected from emission chambers were analyzed using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry and resulting mass spectra were classified into confidence groups. A total of 84, 133 and 197 compounds were found to emit from cross-laminated timber, untreated spruce panel and untreated pine panel, respectively. Pine panel was found to emit a higher number of VOCs as well as higher concentrations of most VOCs compared to the spruce building materials. Several new VOCs were detected in the emission profile of pine and spruce. However, they were mostly structurally similar to previously reported wood VOCs. Two compounds of concern emitting from all three wood building materials were furfural and (E)-2-octenal, as these have been classified as group 2 carcinogen and potent eye irritant, respectively.
2025
Abstract In this study, we evaluated the genomic stability of oral mucosal epithelial cells (OMECs) cultured in complex media (COM) and xenobiotic-free media (XF) to assess their potential clinical application for limbal stem cell deficiency (LSCD) treatments. OMECs serve as a promising autologous cell source for bilateral LSCD treatment, offering an alternative to limbal epithelial cells (LECs). However, genomic integrity is crucial to ensure the long-term success of transplanted cells. We performed micronucleus (MNi) tests and comet assays to compare DNA damage in OMECs cultured in both media types. The results indicated no significant differences in cell morphology, viability, or size between the two conditions. The MNi frequency was similar, with 5.67 and 6.17 MNi per 1,000 cells in COM and XF conditions, respectively. Comet assay results showed low levels of strand breaks (SBs) and oxidized DNA lesions in both media, with XF showing a slightly lower, albeit statistically insignificant, percentage of tail DNA for net Fpg-sensitive sites. Our findings suggest that OMECs can be effectively cultivated in either COM or XF media without inducing significant DNA damage, supporting the potential use of XF media in clinical settings to reduce contamination risks. This study underscores the importance of genomic stability in cultured cells for ocular surface transplantation, contributing valuable insights into optimizing culture conditions for safer and more effective clinical applications.
2025
NILU har på oppdrag fra Hydro Aluminium AS Årdal Metallverk utført målinger av svevestøv (PM2.5, PM10), arsen (As), nikkel (Ni) og gassformig fluorid (HF) i omgivelsesluft i Øvre Årdal. Målingene pågikk i perioden 12. januar 2024 – 2. januar 2025 ved Årdal VGS. Konsentrasjonene av de målte komponentene var under de individuelle grenseverdier, målsettingsverdier og luftkvalitetskriterier i måleperioden. Vurderinger rundt spredningsberegningene fra 2021 og måleresultatene fra 2024 viser godt samsvar mellom beregninger og målinger for As, mens beregnet Ni er overestimert sammenlignet med målingene. For svevestøv er beregningene i finfraksjonen PM2.5 litt underestimert sammenlignet med målingene, for PM10 samsvarer beregningene godt med hva som er målt.
NILU
2025