Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 10177 publications. Showing page 408 of 408:

Publication  
Year  
Category

A regulatory perspective on the applicability of NAMs in genotoxicity and carcinogenicity assessment in EU: current practices and future directions

Bossa, Cecilia; Alivernini, Silvia; Andreoli, Cristina; Aquilina, Gabriele; Attias, Leonello; Benfenati, Emilio; Dusinska, Maria; Yamani, Naouale El; Louro, Henriqueta; Marcon, Francesca; Raitano, Giuseppa; Rundén-Pran, Elise; Russo, Maria Teresa; Silva, Maria João; Battistelli, Chiara Laura

New Approach Methodologies (NAMs) are gaining significant momentum globally to reduce animal testing and enhance the efficiency and human relevance of chemical safety assessment. Even with substantial EU commitment from regulatory agencies and the academic community, the full regulatory adoption of NAMs remains a distant prospect. This challenge is further complicated by the fact that the academic world, oriented toward NAMs development, and regulatory agencies, focused on practical application, frequently operate in separate spheres. Addressing this disconnect, the present paper, developed within the European Partnership for the Assessment of Risks from Chemicals (PARC), provides a clear overview of both the available non-animal tests and current evaluation practices for genotoxic and carcinogenic hazard assessment, while simultaneously highlighting existing regulatory needs, gaps, and challenges toward greater human health protection and the replacement of animal testing through NAMs adoption.

The analysis reveals a complex landscape: while the EU is deeply committed to developing and adopting NAMs, as outlined in its Chemical Strategy for Sustainability and supported by initiatives like PARC, prescriptive regulations such as Classification, Labelling and Packaging (CLP) and Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) still heavily mandate in vivo animal data for hazard classification, particularly for germ cell mutagenicity and carcinogenicity. This reliance creates a “too-short-blanket-problem,” where efforts to reduce animal testing may impact human health protection because of the current in vivo-based classification criteria. In contrast, sectors such as cosmetics and certain European Food Safety Authority (EFSA)-regulated products demonstrate greater flexibility toward progressive integration of NAMs. While the deep mechanistic understanding of genotoxicity and carcinogenicity has significantly advanced the integration of alternatives to animal tests into regulatory chemical hazard assessment, their broader and full implementation faces considerable challenges due to both scientific complexities (i.e., the development and validation of fit-for-purpose NAMs) and existing legislative provisions.

2026

Clustering Analysis of Very Large Measurement and Model Data Sets on High‐Performance Computing Platforms

Lee, Colin J.; Makar, Paul A.; Soares, Joana

Abstract Hierarchical agglomerative clustering is a useful analysis technique which allows for a level of stability, interpretability and flexibility not available in other similar techniques such as K‐means, density‐based clustering or positive matrix factorization. Previous studies using hierarchical clustering on atmospheric model output have been limited to small domain sizes (roughly 100 × 100 grid cells) by the computational expense and memory requirements of the algorithm. Here we present a scalable hierarchical clustering implementation that we apply to two year‐long, hourly atmospheric data sets: model concentration and deposition timeseries at 290,520 locations over Alberta and Saskatchewan (538 540 grid); and 366,427 multi‐pollutant observations from 51 national air pollution surveillance stations located across Canada. When combined with other information such as emissions source locations, orography, and prevailing meteorological conditions, the method yields coherent, interpretable structures. In the case of model time series, the clustering provides regions of similar air quality (airsheds) which can be used to inform air quality monitoring network placement, or regions of similar deposition which can inform critical load assessment as well as monitoring site locations. In the case of the multi‐pollutant observations, we show that a single low‐primary pollutant cluster appears the most frequently at all but one of 51 stations across Canada, accounting for 62% of all station‐hours, while elevated SO 2 appears in factor profiles at certain monitoring locations near industrial and shipping activity. Together, these results demonstrate that hierarchical clustering can efficiently summarize patterns relevant to airshed mapping and source apportionment at previously unreachable scales.

2026

Publication
Year
Category