Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 9849 publications. Showing page 49 of 394:

Publication  
Year  
Category

Atlantic multidecadal oscillation modulates the impacts of Arctic sea ice decline

Li, Fei; Orsolini, Yvan; Wang, Huijun; Gao, Yongqi; He, Shengping

American Geophysical Union (AGU)

2018

Atmopsheric Speciation of Mercury at Alert and Zeppelin. NILU F

Steffen, A.; Berg, T.; Cole.; A.; Pfaffhuber.; K.A.

2013

Atmosfæreforskning og overvåking ved Troll. Faktaark 016/N, E

Holmén, K.

2005

Atmosfærisk nedfall av tungmetaller i Norge. Landsomfattende undersøkelse i 1990. Statlig program for forurensningsovervåking. Rapport 523/93. TA-947/1993.

Steinnes, E.; Røyset, O.; Vadset, M.; Johansen, O.

1993

Atmosfærisk nedfall av tungmetaller i Norge. Landsomfattende undersøkelse i 1995. Statlig program for forurensningsovervåking. Rapport 691/97. TA-1436/1997.

Steinnes, E.; Berg, T.; Vadset, M.; Røyset, O.

1997

Atmosfæriske tilførsler av miljøgifter. Fisken og havet, 1b-2014

Braathen, O.A.

2014

Atmospheric black carbon over the North Atlantic and the Russian Arctic Seas in summer-autumn time.

Shevchenko, V. P.; Kopeikin, V. M.; Evangeliou, N.; Lisitzin, A. P.; Novigatsky, A. N.; Pankratova, N. V.; Starodymova, D. P.; Stohl, A.; Thompson, R.

2016

Atmospheric change in the Arctican update of focused campaigns under POLARCAT. NILU F

Burkhart, J.F.; Bates, T.; Brock, C.A.; Carmichael, G.; Clerbaux, C.; Crawford, J.H.; Dibb, J.E.; Elansky, N.; Ghan, S.; Hirdman, D.; Honrath, R.E.; Jacob, D.; Law, K.; Paris, J.; Quinn, P.; Schlager, H.; Singh, H.B.; Sodemann, H.; Stohl, A.

2009

Atmospheric chemistry of 2-aminoethanol (MEA).

Nielsen,C.J.; D'Anna, B.; Dye, C.; Graus, M.; Karl, M.; King, S.; Maguto, M.M.; Müller, M.; Schmidbauer, N.; Stenstrøm, Y.; Wisthaler, A.; Pedersen, S.

2011

Atmospheric composition change - global and regional quality.

Monks, P.S.; Granier, C.; Fuzzi, S.; Stohl, A.; Williams, M.L.; Akimoto, H.; Amann, M.; Baklanov, A.; Baltensperger, U.; Bey, I.; Blake, N.; Blake, R.S.; Carslaw, K.; Cooper, O.R.; Dentener, F.; Fowler, D.; Fragkou, E.; Frost, G.J.; Generoso, S.; Ginoux, P. et al.

2009

Atmospheric composition in the European Arctic and 30 years of the Zeppelin Observatory, Ny-Ålesund

Platt, Stephen Matthew; Hov, Øystein; Berg, Torunn; Breivik, Knut; Eckhardt, Sabine; Eleftheriadis, Konstantinos; Evangeliou, Nikolaos; Fiebig, Markus; Fisher, Rebecca; Hansen, Georg Heinrich; Hansson, Hans-Christen; Heintzenberg, Jost; Hermansen, Ove; Heslin-Rees, Dominic; Holmén, Kim; Hudson, Stephen; Kallenborn, Roland; Krejci, Radovan; Krognes, Terje; Larssen, Steinar; Lowry, David; Myhre, Cathrine Lund; Lunder, Chris Rene; Nisbet, Euan; Bohlin-Nizzetto, Pernilla; Park, Ki-Tae; Pedersen, Christina Alsvik; Pfaffhuber, Katrine Aspmo; Röckmann, Thomas; Schmidbauer, Norbert; Solberg, Sverre; Stohl, Andreas; Ström, Johan; Svendby, Tove Marit; Tunved, Peter; Tørnkvist, Kjersti Karlsen; van der Veen, Carina; Vratolis, Stergios; Jun Yoon, Young; Yttri, Karl Espen; Zieger, Paul; Aas, Wenche; Tørseth, Kjetil

The Zeppelin Observatory (78.90∘ N, 11.88∘ E) is located on Zeppelin Mountain at 472 m a.s.l. on Spitsbergen, the largest island of the Svalbard archipelago. Established in 1989, the observatory is part of Ny-Ålesund Research Station and an important atmospheric measurement site, one of only a few in the high Arctic, and a part of several European and global monitoring programmes and research infrastructures, notably the European Monitoring and Evaluation Programme (EMEP); the Arctic Monitoring and Assessment Programme (AMAP); the Global Atmosphere Watch (GAW); the Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS); the Advanced Global Atmospheric Gases Experiment (AGAGE) network; and the Integrated Carbon Observation System (ICOS). The observatory is jointly operated by the Norwegian Polar Institute (NPI), Stockholm University, and the Norwegian Institute for Air Research (NILU). Here we detail the establishment of the Zeppelin Observatory including historical measurements of atmospheric composition in the European Arctic leading to its construction. We present a history of the measurements at the observatory and review the current state of the European Arctic atmosphere, including results from trends in greenhouse gases, chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), other traces gases, persistent organic pollutants (POPs) and heavy metals, aerosols and Arctic haze, and atmospheric transport phenomena, and provide an outline of future research directions.

2022

Atmospheric constraints on the methane emissions from the East Siberian Shelf.

Berchet, A.; Bousquet, P.; Pison, I.; Locatelli, R.; Chevallier, F.; Paris, J.-D.; Dlugokencky, E. J.; Laurila, T.; Hatakka, J.; Viisanen, Y.; Worthy, D. E. J.; Nisbet, E.; Fisher, R.; France, J.; Lowry, D.; Ivakhov, V.; Hermansen, O.

2016

Atmospheric corrosion due to amine emissions from carbon capture plants

Grøntoft, Terje

The atmospheric corrosion due to pure amines emitted from carbon capture plants was investigated. Amine exposure was found to initially inhibit the corrosion of steel, by its film formation and alkalinity, but reduce corrosion product layers and lead to freezing point depression, which could in turn increase the corrosion. Very high amine doses were observed to dissolve the metal without the establishing of a corrosion layer. These effects seem much more pronounced on copper than on steel. Climate and air quality variations affect the steel corrosion much more than the expected maximum amine deposition from carbon capture plant emissions.

Elsevier

2021

Atmospheric corrosion tests along the Norwegian-Russian border. NILU OR

Henriksen, J F.; Mikhailov, A A.; Mikhailovski, Y.

1992

Publication
Year
Category