Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 9746 publications. Showing page 8 of 390:

Publication  
Year  
Category

A Portal and IT infrastructure supporting Risk Governance of nano- and advanced materials and nano-enabled products

Bouman, Evert Alwin; Isigonis, Panagiotis; Afantitis, Antreas; Jensen, K. A.; Fransman, W.; Porcari, A.; Drobne, D.; Suarez-Merino, B.; Hristozov, D.; Pozuelo Rollón, B.; Ballesteros, A.; Rodriguez-Llopis, I.; Säämänen, A.; Bakker, M.

2022

A portal supporting risk governance of nano- and advanced materials

Fransman, W.; Panagiotis, Isigonis; Afantitis, Antreas; Jensen, Keld Alstrup; Bouman, Evert Alwin; Drobne, D.; Pozuelo Rollón, B.

2023

A Portal supporting Risk Governance of nano- and advanced materials and nano-enabled products

Bouman, Evert Alwin; Isigonis, Panagiotis; Afantitis, Antreas; Jensen, K. A.; Fransman, W.; Drobne, D.; Pozuelo Rollón, B.; Ballesteros, A.; Rodriguez-Llopis, I.; Säämänen, A.

2023

A practical approach to an integrated citizens' observatory: The CITI-SENSE framework. CEUR Workshop Proceedings, 1322

Kobernus, M.; Berre, A.J.; Gonzalez, M.; Liu, H.-Y.; Fredriksen, M.; Rombouts, R.; Bartonova, A.

2015

A pre-validation trial - testing genotoxicity of several chemicals using standard, medium- and high-throughput comet formats.

Gutzkow, K.B.; Azqueta, A.; Priestley,. C, Graupner, A.; Drlickova, M.; Dusinska, M.; Brunborg, G.; Soussaline, F.; Collins, A.

2015

A Precipitation Isotopic Response in 2014–2015 to Moisture Transport Changes in the Central Himalayas

Axelsson, Josefine; Gao, Jing; Eckhardt, Sabine; Cassiani, Massimo; Cheng, Deliang; Zhang, Qiong

The impact of moisture transport and sources on precipitation stable isotopes (δ18O and d-excess) in the central Himalayas are crucial to understanding the climatic archives. However, this is still unclear due to the lack of in-situ observations. Here we present measurements of stable isotopes in precipitation at two stations (Yadong and Pali) in the central Himalayas during 2014–2015. Combined with simulations from the dispersion model FLEXPART, we investigate effects on precipitation stable isotopes related to changes in moisture sources and convections in the region, and possible influence by El Niño. Our results suggest that the moisture supplies related to evaporation over northeastern India and moisture losses related to convective activities over the Bay of Bengal (BoB) and Bangladesh region play important roles in changes in δ18O and d-excess in precipitation in the Yadong Valley. Outgoing longwave radiation and moisture flux divergence analysis further confirm that the contribution from continental evaporation dominates the moisture supply in the central Himalayas with a lesser contribution from convection over the BoB during the 2015 monsoon season compared with 2014. A change in the altitude effect is observed in 2015, which is more significant than the temperature and precipitation amount effect during the observation period. These findings provide valuable insights into climatic interpretations of paleo-isotopic archives with an isotopic response to changes in moisture transport to the central Himalayas.

American Geophysical Union (AGU)

2023

A presentation of the EPISODE urban scale air quality model and its application to Nordic winter conditions

Hamer, Paul David; Walker, Sam-Erik; Sousa Santos, Gabriela; Vogt, Matthias; Vo, Dam Thanh; Lopez-Aparicio, Susana; Ramacher, Martin O. P.; Karl, Matthias

2020

A quest for affordable personalized atmospheric exposure estimates. NILU F

Kobernus, M.; Havlik, D.; van der Schaaf, H.; Pielorz, J.; Falgenhauer, M.

2012

A quest for affordable personalized atmospheric exposure estimates.

Kobernus, M.; Havlik, D.; van der Schaaf, H.; Pielorz, J.; Falgenhauer, M.

2012

A real-time operational forecast model for meteorology and air quality during peak air pollution episodes in Oslo, Norway.

Berge, E.; Walker, S.E.; Sorteberg, A.; Lenkopane, M.L.; Eastwood, S.; Jablonska, H.J.; Ødegaard,M.

2001

A regional air quality forecasting system over Europe: the MACC-II daily ensemble production.

Marécal, V.; Peuch, V.-H.; Andersson, C.; Andersson, S.; Arteta, J.; Beekmann, M.; Benedictow, A.; Bergström, R.; Bessagnet, B.; Cansado, A.; Chéroux, F.; Colette, A.; Coman, A.; Curier, R. L.; Denier van der Gon, H. A. C.; Drouin, A.; Elbern, H.; Emili, E.; Engelen, R. J.; Eskes, H. J.; Foret, G.; Friese, E.; Gauss, M.; Giannaros, C.; Guth, J.; Joly, M.; Jaumouillé, E.; Josse, B.; Kadygrov, N.; Kaiser, J. W.; Krajsek, K.; Kuenen, J.; Kumar, U.; Liora, N.; Lopez, E.; Malherbe, L.; Martinez, I.; Melas, D.; Meleux, F.; Menut, L.; Moinat, P.; Morales, T.; Parmentier, J.; Piacentini, A.; Plu, M.; Poupkou, A.; Queguiner, S.; Robertson, L.; Rouïl, L.; Schaap, M.; Segers, A.; Sofiev, M.; Tarrasón, L.; Thomas, M.; Timmermans, R.; Valdebenito, Á.; van Velthoven, P.; van Versendaal, R.; Vira, J.; Ung, A.

2015

A regional modelling study of halogen chemistry within a volcanic plume of Mt Etna's Christmas 2018 eruption

Narivelo, Herizo; Hamer, Paul David; Marécal, Virginie; Surl, Luke; Roberts, Tjarda; Pelletier, Sophie; Josse, Béatrice; Guth, Jonathan; Bacles, Mickaël; Warnach, Simon; Wagner, Thomas; Corradini, Stefano; Salerno, Giuseppe; Guerrieri, Lorenzo

Volcanoes are known to be important emitters of atmospheric gases and aerosols, which for certain volcanoes can include halogen gases and in particular HBr. HBr emitted in this way can undergo rapid atmospheric oxidation chemistry (known as the bromine explosion) within the volcanic emission plume, leading to the production of bromine oxide (BrO) and ozone depletion. In this work, we present the results of a modelling study of a volcanic eruption from Mt Etna that occurred around Christmas 2018 and lasted 6 d. The aims of this study are to demonstrate and evaluate the ability of the regional 3D chemistry transport model Modèle de Chimie Atmosphérique de Grande Echelle (MOCAGE) to simulate the volcanic halogen chemistry in this case study, to analyse the variability of the chemical processes during the plume transport, and to quantify its impact on the composition of the troposphere at a regional scale over the Mediterranean basin.

The comparison of the tropospheric SO2 and BrO columns from 25 to 30 December 2018 from the MOCAGE simulation with the columns derived from the TROPOspheric Monitoring Instrument (TROPOMI) satellite measurements shows a very good agreement for the transport of the plume and a good consistency for the concentrations if considering the uncertainties in the flux estimates and the TROPOMI columns. The analysis of the bromine species' partitioning and of the associated chemical reaction rates provides a detailed picture of the simulated bromine chemistry throughout the diurnal cycle and at different stages of the volcanic plume's evolution. The partitioning of the bromine species is modulated by the time evolution of the emissions during the 6 d of the eruption; by the meteorological conditions; and by the distance of the plume from the vent, which is equivalent to the time since the emission. As the plume travels further from the vent, the halogen source gas HBr becomes depleted, BrO production in the plume becomes less efficient, and ozone depletion (proceeding via the Br+O3 reaction followed by the BrO self-reaction) decreases. The depletion of HBr relative to the other prevalent hydracid HCl leads to a shift in the relative concentrations of the Br− and Cl− ions, which in turn leads to reduced production of Br2 relative to BrCl.

The MOCAGE simulations show a regional impact of the volcanic eruption on the oxidants OH and O3 with a reduced burden of both gases that is caused by the chemistry in the volcanic plume. This reduction in atmospheric oxidation capacity results in a reduced CH4 burden. Finally, sensitivity tests on the composition of the emissions carried out in this work show that the production of BrO is higher when the volcanic emissions of sulfate aerosols are increased but occurs very slowly when no sulfate and Br radicals are assumed to be in the emissions. Both sensitivity tests highlight a significant impact on the oxidants in the troposphere at the regional scale of these assumptions.

All the results of this modelling study, in particular the rapid formation of BrO, which leads to a significant loss of tropospheric ozone, are consistent with previous studies carried out on the modelling of volcanic halogens.

2023

A review and framework for the evaluation of pixel-level uncertainty estimates in satellite aerosol remote sensing

Sayer, Andrew M.; Goaverts, Yves; Kolmonen, Pekka; Lipponen, Antti; Luffarelli, Marta; Mielonen, Tero; Patadia, Falguni; Popp, Thomas; Povey, Adam C.; Stebel, Kerstin; Witek, Marcin L.

2020

A Review of Airborne Particulate Matter Effects on Young Children’s Respiratory Symptoms and Diseases

Liu, Hai-Ying; Dunea, Daniel; Iordache, Stefania; Pohoata, Alin

Exposure to airborne fine particulate matter (PM2.5) carries substantial health risks, particularly for younger children (0–10 years). Epidemiological evidence indicates that children are more susceptible to PM health effects than adults. We conducted a literature review to obtain an overview of existing knowledge regarding the correlation of exposure to short- and long-term PM concentrations with respiratory symptoms and disease in children. A collection of scientific papers and topical reviews were selected in cooperation with two experienced paediatricians. The literature review was performed using the keywords “air pollution”, “particulate matter”, “children’s health” and “respiratory” from 1950 to 2016, searching the databases of Scopus, Google Scholar, Web of Science, and PubMed. The search provided 45,191 studies for consideration. Following the application of eligibility criteria and experts’ best judgment to titles and abstracts, 28 independent studies were deemed relevant for further detailed review and knowledge extraction. The results showed that most studies focused mainly on the effect of short-term exposure in children, and the reported associations were relatively homogeneous amongst the studies. Most of the respiratory diseases observed in outdoor studies were related to changes in lung function and exacerbation of asthma symptoms. Allergic reactions were frequently reported in indoor studies. Asthma exacerbation, severe respiratory symptoms and moderate airway obstruction on spirometry were also observed in children due to various sources of indoor pollution in households and schools. Mixed indoor and outdoor studies indicate frequent occurrence of wheezing and deterioration of lung function. There is good evidence of the adverse effect of short-term exposure to PM on children’s respiratory health. In terms of long-term exposure, fine particles (PM0.1–PM2.5) represent a higher risk factor than coarse particles (PM2.5–PM10). Additional research is required to better understand the heterogeneous sources and the association of PM and adverse children’s health outcomes. We recommend long-term cooperation between air quality specialists, paediatricians, epidemiologists, and parents in order to improve the knowledge of PM effects on young children’s respiratory health.

MDPI

2018

A review of volcanic ash aggregation.

Brown, R.J.; Bonadonna, C.; Durant, A.J.

2012

A review on the abundance, distribution and eco-biological risks of PAHs in the key environmental matrices of South Asia. Reviews of Environmental Contamination and Toxicology, 240

Hamid, N.; Syed, J. H.; Kamal, A.; Aziz, F.; Tanveer, S.; Ali, U. Cincinelli, A.; Katsoyiannis, A.; Yadav, I. C.; Li, J.; Malik, R. N.; Zhang, G.

2017

Publication
Year
Category