Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 9759 publications. Showing page 94 of 391:

Publication  
Year  
Category

Recommendations for reporting equivalent black carbon (eBC) mass concentrations based on long-term pan-European in-situ observations

Savadkoohi, Marjan; Pandolfi, Marco; Favez, Olivier; Putaud, Jean-Philippe; Eleftheriadis, Konstantinos; Fiebig, Markus; Hopke, Philip K.; Laj, Paolo G.; Wiedensohler, Alfred; Alados-Arboledas, Lucas; Bastian, Susanne; Chazeau, Benjamin; Maria, Alvaro Clemente; Colombi, Cristina; Costabile, Francesca; Green, David C.; Hueglin, Christoph; Liakakou, Eleni; Luoma, Krista; Listrani, Stefano; Mihalopoulos, Nikos; Marchand, Nicolas; Močnik, Griša; Niemi, Jarkko V; Ondráček, Jakub; Petit, Jean Eudes; Rattigan, Oliver V.; Reche, Cristina; Timonen, Hilkka; Titos, Gloria; Tremper, Anja H.; Vratolis, Stergios; Vodicka, Petr; Funes, Eduardo Yubero; Zíková, Naděžda; Harrison, Roy M.; Petäjä, Tuukka; Alastuey, Andrés; Querol, Xavier

A reliable determination of equivalent black carbon (eBC) mass concentrations derived from filter absorption photometers (FAPs) measurements depends on the appropriate quantification of the mass absorption cross-section (MAC) for converting the absorption coefficient (babs) to eBC. This study investigates the spatial–temporal variability of the MAC obtained from simultaneous elemental carbon (EC) and babs measurements performed at 22 sites. We compared different methodologies for retrieving eBC integrating different options for calculating MAC including: locally derived, median value calculated from 22 sites, and site-specific rolling MAC. The eBC concentrations that underwent correction using these methods were identified as LeBC (local MAC), MeBC (median MAC), and ReBC (Rolling MAC) respectively. Pronounced differences (up to more than 50 %) were observed between eBC as directly provided by FAPs (NeBC; Nominal instrumental MAC) and ReBC due to the differences observed between the experimental and nominal MAC values. The median MAC was 7.8 ± 3.4 m2 g-1 from 12 aethalometers at 880 nm, and 10.6 ± 4.7 m2 g-1 from 10 MAAPs at 637 nm. The experimental MAC showed significant site and seasonal dependencies, with heterogeneous patterns between summer and winter in different regions. In addition, long-term trend analysis revealed statistically significant (s.s.) decreasing trends in EC. Interestingly, we showed that the corresponding corrected eBC trends are not independent of the way eBC is calculated due to the variability of MAC. NeBC and EC decreasing trends were consistent at sites with no significant trend in experimental MAC. Conversely, where MAC showed s.s. trend, the NeBC and EC trends were not consistent while ReBC concentration followed the same pattern as EC. These results underscore the importance of accounting for MAC variations when deriving eBC measurements from FAPs and emphasize the necessity of incorporating EC observations to constrain the uncertainty associated with eBC.

Elsevier

2024

Recommendations for reporting "black carbon" measurements.

Petzold, A.; Ogren, J. A.; Fiebig, M.; Laj, P.; Li, S.-M.; Baltensperger, U.; Holzer-Popp, T.; Kinne, S.; Pappalardo, G.; Sugimoto, N.; Wehrli, C.; Wiedensohler, A.; Zhang, X.-Y.

2013

Recommendations for an update of the Implementing Provisions for Reporting (IPR) in connection with the revision of the Ambient Air Quality Directives

Tarrasón, Leonor; Guerreiro, Cristina

This report aims to support the on-going revision of the Ambient Air Quality Directives by providing a series of recommendations on the reciprocal exchange of information and reporting of ambient air quality (e-reporting) following the Commission Implementing Decision (2011/850/EU). It builds on the experience and understanding from the EEA and technical experts at its European Topic Centre for Human Health and the Environment (ETC HE) working with implementing provisions for reporting (IPR) and identifies areas for further efficiency gains in e-reporting, in particular concerning the H-K dataflows.

ETC/HE

2022

Recommendations for a composite surface-based aerosol network. European Network of Networks (ENAN) workshop, Emmetten, Switzerland, 28-29 April 2009. GAW - Global atmosphere watch, 207

Myhre, C.L.; Baltensperger, U. Contributing authors: Barrie, L.; Fiebig, M.; Goloub, P.; Gras, J.; Hoff, R.; Holzer-Popp, T.; Jennings, G.; Kinne, S.; Klausen, J.; Laj, P.; de Leeuw, G.; Li, s.-M.; Müller, D.; Ogren, J.; Pappalardo, G.; Schulz, M.; Smirnov, A.; Tørseth, K.; Volz-Thomas, A.; Wehrli, C.; Wilson, J.; Zhang, X.-Y.

2013

Receptor Modelling - Application to wood burning. NILU OR

Lazaridis, M.; Larssen, S.

2000

Recent Updates in Risk Assessment of Nanomaterials

Dusinska, Maria; Longhin, Eleonora Marta; El Yamani, Naouale; Rundén-Pran, Elise; Elje, Elisabeth; Honza, Tatiana; McFadden, Erin

2023

Recent Trends in Stratospheric Chlorine From Very Short-Lived Substances

Hossaini, Ryan; Atlas, Elliot; Dhomse, Sandip S.; Chipperfield, Martyn P.; Bernath, Peter F.; Fernando, Anton M.; Mühle, Jens; Leeson, Amber A.; Montzka, Stephen A.; Feng, Wuhu; Harrison, Jeremy J.; Krummel, Paul; Vollmer, Martin K.; Reimann, Stefan; O'Doherty, Simon; Young, Dickon; Maione, Michela; Arduini, Jgor; Lunder, Chris Rene

Very short‐lived substances (VSLS), including dichloromethane (CH2Cl2), chloroform (CHCl3), perchloroethylene (C2Cl4), and 1,2‐dichloroethane (C2H4Cl2), are a stratospheric chlorine source and therefore contribute to ozone depletion. We quantify stratospheric chlorine trends from these VSLS (VSLCltot) using a chemical transport model and atmospheric measurements, including novel high‐altitude aircraft data from the NASA VIRGAS (2015) and POSIDON (2016) missions. We estimate VSLCltot increased from 69 (±14) parts per trillion (ppt) Cl in 2000 to 111 (±22) ppt Cl in 2017, with >80% delivered to the stratosphere through source gas injection, and the remainder from product gases. The modeled evolution of chlorine source gas injection agrees well with historical aircraft data, which corroborate reported surface CH2Cl2 increases since the mid‐2000s. The relative contribution of VSLS to total stratospheric chlorine increased from ~2% in 2000 to ~3.4% in 2017, reflecting both VSLS growth and decreases in long‐lived halocarbons. We derive a mean VSLCltot growth rate of 3.8 (±0.3) ppt Cl/year between 2004 and 2017, though year‐to‐year growth rates are variable and were small or negative in the period 2015–2017. Whether this is a transient effect, or longer‐term stabilization, requires monitoring. In the upper stratosphere, the modeled rate of HCl decline (2004–2017) is −5.2% per decade with VSLS included, in good agreement to ACE satellite data (−4.8% per decade), and 15% slower than a model simulation without VSLS. Thus, VSLS have offset a portion of stratospheric chlorine reductions since the mid‐2000s.

American Geophysical Union (AGU)

2019

Recent methane surges reveal heightened emissions from tropical inundated areas

Lin, Xin; Peng, Shushi; Ciais, Philippe; Hauglustaine, Didier; Lan, Xin; Liu, Gang; Ramonet, Michel; Xi, Yi; Yin, Yi; Zhang, Zhen; Bösch, Hartmut; Bousquet, Philippe; Chevallier, Frédéric; Dong, Bogang; Gerlein-Safdi, Cynthia; Halder, Santanu; Parker, Robert J.; Poulter, Benjamin; Pu, Tianjiao; Remaud, Marine; Runge, Alexandra; Saunois, Marielle; Thompson, Rona Louise; Yoshida, Yukio; Zheng, Bo

Record breaking atmospheric methane growth rates were observed in 2020
and 2021 (15.2±0.5 and 17.8±0.5 parts per billion per year), the highest since the
early 1980s. Here we use an ensemble of atmospheric inversions informed by
surface or satellite methane observations to infer emission changes during
these two years relative to 2019. Results show global methane emissions
increased by 20.3±9.9 and 24.8±3.1 teragrams per year in 2020 and 2021,
dominated by heightened emissions from tropical and boreal inundated areas,
aligning with rising groundwater storage and regional warming. Current
process-based wetland models fail to capture the tropical emission surges
revealed by atmospheric inversions, likely due to inaccurate representation of
wetland extents and associated methane emissions. Our findings underscore
the critical role of tropical inundated areas in the recent methane emission
surges and highlight the need to integrate multiple data streams and modeling
tools for better constraining tropical wetland emissions.

Springer Nature

2024

Recent European F-gas Emissions from Multiple Inverse Modelling Systems

De Longueville, Helene; Melo, Daniela Brito; Ramsden, Alice; Redington, Alison; Danjou, Alexandre; Andrews, Peter; Pitt, Joseph R.; Murphy, Brendan; Saboya, Eric; Stanley, Kieran M.; O'Doherty, Simon; Wenger, Angelina; Young, Dickon; Engel, Andreas; Vollmer, Martin K.; Reimann, Stefan; Maione, Michela; Arduini, Jgor; Lunder, Chris Rene; Wagenhaeuser, Thomas; Schmidbauer, Norbert; Frumau, Arnoud; Haszpra, László; Molnar, Mihaly; Tunnicliffe, Rachel; Western, Luke M.; Rigby, Matthew; Henne, Stephan; Manning, Alistair J.; Ganesan, Anita L.

2024

Recent developments in screening and monitoring of airborne contaminants of emerging concern

Schlabach, Martin; Aas, Wenche; Bohlin-Nizzetto, Pernilla; Tørseth, Kjetil

2019

Recent development and trends for 4 long-lived halocarbons in the Arctic. NILU F

Fjæraa, A.M.,Myhre, C.L.; Stordal, F.; Lunder, C.R.; Hermansen, O.; Schmidbauer, N.

2010

Recent Arctic ozone depletion: Is there an impact of climate change?

Pommereau, Jean-Pierre; Goutail, Florence; Pazmino, Andrea; Lefèvre, Franck; Chipperfield, Martyn P.; Feng, Wuhu; van Roozendael, Michel; Jepsen, Nis; Hansen, Georg; Kivi, Rigel; Bognar, Kristof; Strong, Kimberly; Walker, Kaley; Kuzmichev, Alexandr; Khattatov, Slava; Sitnikova, Vera

After the well-reported record loss of Arctic stratospheric ozone of up to 38% in the winter 2010–2011, further large depletion of 27% occurred in the winter 2015–2016. Record low winter polar vortex temperatures, below the threshold for ice polar stratospheric cloud (PSC) formation, persisted for one month in January 2016. This is the first observation of such an event and resulted in unprecedented dehydration/denitrification of the polar vortex. Although chemistry–climate models (CCMs) generally predict further cooling of the lower stratosphere with the increasing atmospheric concentrations of greenhouse gases (GHGs), significant differences are found between model results indicating relatively large uncertainties in the predictions. The link between stratospheric temperature and ozone loss is well understood and the observed relationship is well captured by chemical transport models (CTMs). However, the strong dynamical variability in the Arctic means that large ozone depletion events like those of 2010–2011 and 2015–2016 may still occur until the concentrations of ozone-depleting substances return to their 1960 values. It is thus likely that the stratospheric ozone recovery, currently anticipated for the mid-2030s, might be significantly delayed. Most important in order to predict the future evolution of Arctic ozone and to reduce the uncertainty of the timing for its recovery is to ensure continuation of high-quality ground-based and satellite ozone observations with special focus on monitoring the annual ozone loss during the Arctic winter.

Elsevier

2018

Recent Advances Towards a Constellation Approach to Satellite Validation for Air Quality and Ozone

Lambert, Jean-Christopher; Verhoelst, Tijl; Compernolle, Steven; Hubert, Daan; Keppens, Arno; Cede, Alexander; Fjæraa, Ann Mari; Pazmiño, Andrea; Redondas, Alberto; Van Roozendael, Michel

2024

Recent advances and current challenges of new approach methodologies in developmental and adult neurotoxicity testing

Serafini, Melania Maria; Sepheri, Sara; Midali, Miriam; Stinckens, Marth; Biesiekierska, Marta; Wolniakowska, Anna; Gatzios, Alexandra; Rundén-Pran, Elise; Reszka, Edyta; Marinovich, Marina; Vanhaecke, Tamara; Roszak, Joanna; Viviani, Barbara; SenGupta, Tanima

Adult neurotoxicity (ANT) and developmental neurotoxicity (DNT) assessments aim to understand the adverse effects and underlying mechanisms of toxicants on the human nervous system. In recent years, there has been an increasing focus on the so-called new approach methodologies (NAMs). The Organization for Economic Co-operation and Development (OECD), together with European and American regulatory agencies, promote the use of validated alternative test systems, but to date, guidelines for regulatory DNT and ANT assessment rely primarily on classical animal testing. Alternative methods include both non-animal approaches and test systems on non-vertebrates (e.g., nematodes) or non-mammals (e.g., fish). Therefore, this review summarizes the recent advances of NAMs focusing on ANT and DNT and highlights the potential and current critical issues for the full implementation of these methods in the future. The status of the DNT in vitro battery (DNT IVB) is also reviewed as a first step of NAMs for the assessment of neurotoxicity in the regulatory context. Critical issues such as (i) the need for test batteries and method integration (from in silico and in vitro to in vivo alternatives, e.g., zebrafish, C. elegans) requiring interdisciplinarity to manage complexity, (ii) interlaboratory transferability, and (iii) the urgent need for method validation are discussed.

Springer

2024

Reassessing the role of urban green space in air pollution control

Venter, Zander; Hassani, Amirhossein; Stange, Erik; Schneider, Philipp; Castell, Nuria

The assumption that vegetation improves air quality is prevalent in scientific, popular, and political discourse. However, experimental and modeling studies show the effect of green space on air pollutant concentrations in urban settings is highly variable and context specific. We revisited the link between vegetation and air quality using satellite- derived changes of urban green space and air pollutant concentrations from 2,615 established monitoring stations over Europe and the United States. Between 2010 and 2019, stations recorded declines in ambient NO2, (particulate matter) PM10, and PM2.5 (average of −3.14% y−1), but not O3 (+0.5% y−1), pointing to the general success of recent policy interventions to restrict anthropogenic emissions. The effect size of total green space on air pollution was weak and highly variable, particularly at the street scale (15 to 60 m radius) where vegetation can restrict ventilation. However, when isolating changes in tree cover, we found a negative association with air pollution at borough to city scales (120 to 16,000 m) particularly for O3 and PM. The effect of green space was smaller than the pollutant deposition and dispersion effects of meteorological drivers including precipitation, humidity, and wind speed. When averaged across spatial scales, a one SD increase in green space resulted in a 0.8% (95% CI: −3.5 to 2%) decline in air pollution. Our findings suggest that while urban greening may improve air quality at the borough- to- city scale, the impact is moderate and may have detrimental street- level effects depending on aerodynamic factors like vegetation type and urban form.
vegetation | urban planning | green infrastructure | ecosystem service | public health

2024

Reassessing past European gasoline lead policies.

von Storch, H.; Hagner, C.; Costa-Cabral, M.; Feser, F.; Pacyna, J.; Pacyna, E.; Kolb, S.

2002

REanalysis of the TROpospheric chemical composition over the past 40 years. A long-term global modeling study of tropospheric chemistry funded under the 5th EU framework programme. Reports on Earth System Science, 48/2007

Schultz, M.G. (eds.) Backman, L.; Balkanski, Y.; Bjoerndalsaeter, S.; Brand, R.; Burrows, J.P.; Dalsoeren, S.; de Vasconcelos, M.; Grodtmann, B.; Hauglustaine, D.A.; Heil, A.; Hoelzemann, J.J.; Isaksen, I.S.A.,Kaurola, J.; Knorr, W.; Ladstaetter-Weißenmayer, A.; Mota, B.; Oom, D.; Pacyna, J.; Panasiuk, D.; Pereira, J.M.C.; Pulles, T.; Pyle, J.; Rast, S.; Richter, A.; Savage, N.; Schnadt, C.; Schulz, M.; Spessa, A.; Staehelin, J.; Sundet, J.K.; Szopa, S.; Thonicke, K.; van het Bolscher, M.; van Noije, T.; van Velthoven,P.; Vik, A.F.; Wittrock, F.

2007

Publication
Year
Category