Found 9719 publications. Showing page 386 of 389:
2024
Disse miljøgiftene fant forskerne igjen i de ville dyrene
Norges forskningsråd
2024
Forecasting the Exceedances of PM2.5 in an Urban Area
Particular matter (PM) constitutes one of the major air pollutants. Human exposure to fine PM (PM with a median diameter less than or equal to 2.5 μm, PM2.5) has many negative and diverse outcomes for human health, such as respiratory mortality, lung cancer, etc. Accurate air-quality forecasting on a regional scale enables local agencies to design and apply appropriate policies (e.g., meet specific emissions limitations) to tackle the problem of air pollution. Under this framework, low-cost sensors have recently emerged as a valuable tool, facilitating the spatiotemporal monitoring of air pollution on a local scale. In this study, we present a deep learning approach (long short-term memory, LSTM) to forecast the intra-day air pollution exceedances across urban and suburban areas. The PM2.5 data used in this study were collected from 12 well-calibrated low-cost sensors (Purple Air) located in the greater area of the Municipality of Thermi in Thessaloniki, Greece. The LSTM-based methodology implements PM2.5 data as well as auxiliary data, meteorological variables from the Copernicus Atmosphere Monitoring Service (CAMS), which is operated by ECMWF, and time variables related to local emissions to enhance the air pollution forecasting performance. The accuracy of the model forecasts reported adequate results, revealing a correlation coefficient between the measured PM2.5 and the LSTM forecast data ranging between 0.67 and 0.94 for all time horizons, with a decreasing trend as the time horizon increases. Regarding air pollution exceedances, the LSTM forecasting system can correctly capture more than 70.0% of the air pollution exceedance events in the study region. The latter findings highlight the model’s capabilities to correctly detect possible WHO threshold exceedances and provide valuable information regarding local air quality.
MDPI
2024
2024
2024
European cities air quality ranking: a new methodology
The EEA has introduced the European City Air Quality Viewer, a tool to assess and compare air quality in European cities. However, this method provides an incomplete picture of air quality as it relies solely on PM2.5 data from monitoring stations, excluding cities lacking monitoring stations and other relevant pollutants such as NO2 and O3. A promising alternative to the current methodology is proposed to reduce these limitations, offering a comprehensive approach to assessing and comparing health risks linked to exposure to multiple pollutants in urban settings. Leveraging continuous air quality maps and population-weighted concentrations enhances coverage and consistency in risk estimation across cities. Additionally, it allows for ranking based on multiple pollutants, unlike the current method, which focuses solely on PM2.5 levels. This approach integrates mortality risk assessments associated with PM2.5, NO2, and O3 exposure, aligning with the Environmental Burden of Disease assessments published by the ETC HE, together with the EEA.
ETC/HE
2024
Hulun Lake, the largest inland steppe lake in China, is encountering severe water quality degradation. Estuaries play important roles in material and energetic exchange between rivers and lakes. The water quality at the estuaries of Hulun Lake directly reflects the impact of both human activities and natural factors on the lake’s overall water quality, especially during rainfall events. From July 28, 2021, to August 4, 2021, water samples from 62 sites were collected in the three estuaries of Hulun Lake before and after a moderate rainfall event. 13 water parameters, including dissolved oxygen (DO), Turbidity (Tur), Total Nitrogen (TN), Total Phosphorus (TP), Total Organic Nitrogen (TON), and Total Organic Phosphorus (TOP) were measured. The spatio-temporal distribution of water quality in the estuaries was assessed based on water quality index (WQI). Besides, an improved approach integrating stepwise linear regression (SLR) and principal component analysis (PCA) was utilized to construct a WQImin model for an effective assessment of water quality in these estuaries. Furthermore, the absolute principal component scores-multiple linear regression (APCS-MLR) model was employed to identify and quantify the environmental drivers underlying the water quality in the estuaries. The results of WQI indicated that the water quality of the sites in the estuaries of Hulun Lake was “medium” or “poor”, both before and after the rainfall, with a general deterioration in water quality in response to the rainfall. The simplified WQImin model consisted of 5 crucial parameters (i.e., TN, TP, ammonium (NH4+-N), Tur, and permanganate index (CODMn)), and it performed well without parameter weights. Spatial differences in some water parameters among the estuaries were detected, which were attributed to the natural factors and human activities upstream. The principal environmental factors affecting the water quality in the estuaries consisted of hydrodynamic processes, internal phosphorus release, external phosphorus input, external nitrogen input, nitrification in the estuaries, and external organic input and internal organic release. Therefore, we propose basin management strategies such as limiting grazing pressure, adopting enclosed pasture, wetland restoration, optimizing water renewal cycle in Hulun Lake, and transboundary water quality management to tackle water contamination in Hulun Lake.
Elsevier
2024
Monitoring air quality in ports and nearby cities is crucial to understanding the role of emissions from shipping and other port activities. This report analyzes air quality in 23 European ports, revealing limited observations in and around port areas. Only 5 of the 23 ports had at least one air quality sampling point for NO2 and PM10 inside the port area. Concentrations in nearby cities can be up to double (NO2) and 74% higher (PM10) when the wind comes from the port. EEA air quality maps showed higher annual mean NO2 concentrations in port areas compared to surrounding regions, with some ports exceeding the 2030 limit value of 20 µg/m³. Annual mean PM10 concentrations were also higher in port areas, with nine ports exceeding the new limit value. The limited number of sampling points makes it challenging to assess trends in NO2 and PM10 concentrations. International shipping emissions significantly contribute to NO2 levels in port cities, as shown by pollution episodes in Antwerpen and Barcelona.
ETC/HE
2024
2024
NILU har, på oppdrag fra Glasopor AS ved Onsøy i Fredrikstad, kartlagt utslipp av støv fra anlegget og effekter på ytre miljø. Bedriften ønsker å oppgradere anlegget og øke produksjonen og har søkt om ny utslippstillatelse. I den forbindelse har Statsforvalteren oppfølgende spørsmål med krav om dokumentasjon knyttet til utslipp av støv og påvirkning på ytre miljø. For å svare på disse spørsmålene har NILU gjennomført målinger, beregning av utslipp og spredningsberegninger. Rapporten skal inngå i dokumentasjonen som oversendes norske myndigheter.
NILU
2024
2024
2024
Roadmap for action for advancing aggregate exposure to chemicals in the EU
The European Food Safety Authority (EFSA) has a goal to efficiently conduct aggregate exposure assessments (AEAs) for chemicals using both exposure models and human biomonitoring (HBM) data by 2030. To achieve EFSA's vision, a roadmap for action for advancing aggregate exposure (AE) in the EU was developed. This roadmap was created by performing a series of engagement and data collection activities to map the currently available methods, data, and tools for assessing AE of chemicals, against the needs and priorities of EFSA. This allowed for the creation of a AEA framework, identification of data and knowledge gaps in our current capabilities, and identification of the challenges and blockers that would hinder efforts to fill the gaps. The roadmap identifies interdependent working areas (WAs) where additional research and development are required to achieve EFSA's goal. It also proposes future collaboration opportunities and recommends several project proposals to meet EFSA's goals. Eight proposal projects supported by SWOT analysis are presented for EFSA's consideration. The project proposals inform high-level recommendations for multi-annual and multi-partner projects. Recommendations to improve stakeholder engagement and communication of EFSA's work on AEA were gathered by surveying stakeholders on specific actions to improve EFSA's communication on AE, including webinars, virtual training, social media channels, and newsletters.
2024
Surface warming in Svalbard may have led to increases in highly active ice-nucleating particles
The roles of Arctic aerosols as ice-nucleating particles remain poorly understood, even though their effects on cloud microphysics are crucial for assessing the climate sensitivity of Arctic mixed-phase clouds and predicting their response to Arctic warming. Here we present a full-year record of ice-nucleating particle concentrations over Svalbard, where surface warming has been anomalously faster than the Arctic average. While the variation of ice-nucleating particles active at around −30 °C was relatively small, those active at higher temperatures (i.e., highly active ice-nucleating particles) tended to increase exponentially with rising surface air temperatures when the surface air temperatures rose above 0 °C and snow/ice-free barren and vegetated areas appeared in Svalbard. The aerosol population relevant to their increase was largely characterized by dust and biological organic materials that likely originated from local/regional terrestrial sources. Our results suggest that highly active ice-nucleating particles could be actively released from Arctic natural sources in response to surface warming.
Springer Nature
2024