Found 2229 publications. Showing page 5 of 223:
Monitoring of long-range transported air pollutants in Norway. Annual report 2023.
This report presents results from the monitoring of atmospheric composition and deposition of air pollution in 2023, and focuses on main components in air and precipitation, particulate and gaseous phase of inorganic constituents, particulate carbonaceous matter, ground level ozone and particulate matter. The level of pollution in 2023 was generally low though a few episodes occurred. There was an increase in the PM levels in southern Norway during June, caused by a mixture of sources, including emissions from wildfires in Canada
NILU
2024
Reviderte beregninger av luftkvalitet ved Bjørnheimveien 26
NILU har blitt engasjert av Prem Partners II A/S for å vurdere utbredelse av luftsoner for dagens situasjon og en framtidig situasjon med foreslått boligblokk i Bjørnheimveien 26. Det er anvendt en Gaussisk spredningsmodell for linjekilder (Hiway-2). Når det tas hensyn til lokal topografi ved det aktuelle området, viser beregningene at den nye bygningen i hovedsak faller utenfor rød luftsone på bakkenivå, med unntak av det sørøstre hjørnet av bygningen som beregningene indikerer at ligger innenfor. Videre viser beregningene at skjermingseffekten for eksisterende bebyggelse av en ny bygning er marginal. Rapporten er en revisjon av NILU-rapport 15/2021.
NILU
2024
NILU og Transportøkonomisk institutt (TØI) har på oppdrag fra Miljødirektoratet videreutviklet modellen NERVE («Norwegian Emissions from Road Vehicle Exhaust») for beregning av klimagassutslipp fra veitrafikken i norske kommuner. NERVE-modellen anvender de mest detaljerte datasettene for bilpark, utslippsfaktorer, trafikk og veier for spesifikke lokale forhold. Datasettene er kombinert i en datastruktur som gjør at resultat kan aggregeres på et lite eller et stort geografisk område. NERVE kan således betegnes som en «bottom-up»-utslippsmodell, fordi den er bygget opp «nedenfra» fra detaljerte datakilder. Denne rapporten presenterer metodikken og antagelsene bak beregningene med NERVE, og sammenligner resultat aggregert på nasjonalt nivå med annen tilgjengelig nasjonal statistikk.
NILU
2024
Investigating snow deposition of cyclic siloxanes in an Arctic environment
cVMS are high production volume chemicals that are used for a wide range of industrial and domestic applications. Given the high volatility of cVMS, emissions occur mainly to the atmosphere, and cVMS are present in the Arctic atmosphere, e.g. at the Zeppelin Observatory near Ny Ålesund, Svalbard, suggesting potential for long-range atmospheric transport. A study to investigate whether cVMS have the potential to deposit to surface media, and thereby represent a potential risk to the terrestrial or marine environment in polar and Arctic regions was carried out. Overall, cVMS levels in samples of vegetation, soil, sediment and marine biota were low. D4 was detected in most samples at concentrations above LOD, but below LOQ, while D5 and D6 were generally not detected. The low cVMS concentrations in soil, vegetation, sediments, and fish are in line with most current research on cVMS in remote regions, which together suggest that input of cVMS from atmospheric deposition and snow melt is likely not a major contributing source.
NILU
2024
Monitoring of environmental contaminants in freshwater food webs (MILFERSK), 2023
This report presents data from the third year of a 5-year period of the MILFERSK program. In 2023 the monitoring program reports on the sampling and analyses of the pelagic food chain in Lake Mjøsa, with the following sample types: zooplankton, Mysis, E. smelt, vendace, and brown trout, in addition to brown trout from Lake Femunden. A total of 205 single compounds/isomers were determined, and frequent detections were found of specific PFAS, PBDEs, Hg and siloxanes through the food chain with biomagnifying properties. Some contaminants, such as octocrylene is found in higher concentrations in the lower trophic levels. A slight downwards trend is observed from 2014 – 2023 for PFOS in Lake Mjøsa. We also observe a lower length adjusted mercury concentration for brown trout in Lake Mjøsa for the period 2014 to 2023, compared to the 9 years prior (2006 – 2014).
Norsk institutt for vannforskning (NIVA)
2024
Integrating Low-cost Sensor Systems and Networks to Enhance Air Quality Applications
Low-cost air quality sensor systems (LCS) are emerging technologies for policy-relevant air quality analysis, including pollution levels, source identification, and forecasting. This report discusses LCS use in networks and alongside other data sources for comprehensive air quality applications, complementing other WMO publications on LCS operating principles, calibration, performance assessment, and data communication.
The LCS’s utility lies in their ability to provide new insights into air quality that existing data sources may not offer. While LCS data must be verified, their integration with other data sources can enhance understanding and management of air quality. In areas without reference-grade monitors, LCS can identify factors affecting local air quality and guide future monitoring efforts. Combining LCS data with satellite and other air quality systems can improve data reliability and establish corroborating evidence for observed trends. LCS can extend the spatial coverage of existing monitoring networks, offering localized insights and supporting effective air quality management policies. Co-locating LCS with reference-grade monitors helps quantify measurement uncertainties and apply LCS data appropriately for forecasting, source impact analysis, and community engagement.
World Meteorological Organization
2024
Copernicus Atmosphere Monitoring Servicice
2024
2024
Monitoring air quality in ports and nearby cities is crucial to understanding the role of emissions from shipping and other port activities. This report analyzes air quality in 23 European ports, revealing limited observations in and around port areas. Only 5 of the 23 ports had at least one air quality sampling point for NO2 and PM10 inside the port area. Concentrations in nearby cities can be up to double (NO2) and 74% higher (PM10) when the wind comes from the port. EEA air quality maps showed higher annual mean NO2 concentrations in port areas compared to surrounding regions, with some ports exceeding the 2030 limit value of 20 µg/m³. Annual mean PM10 concentrations were also higher in port areas, with nine ports exceeding the new limit value. The limited number of sampling points makes it challenging to assess trends in NO2 and PM10 concentrations. International shipping emissions significantly contribute to NO2 levels in port cities, as shown by pollution episodes in Antwerpen and Barcelona.
ETC/HE
2024
The report provides the annual update of the European air quality concentration maps and population and vegetation exposure estimates for human health related indicators of pollutants PM10 (annual average, 90.4 percentile of daily means), PM2.5 (annual average), ozone (93.2 percentile of maximum daily 8-hour means, peak season average of maximum daily 8-hour means, SOMO35, SOMO10), NO2 (annual average) and benzo(a)pyrene (annual average), and vegetation related ozone indicators (AOT40 for vegetation and for forests) for the year 2022. The report contains also maps of Phytotoxic ozone dose (PODY) for selected crops (wheat, potato and tomato) and trees (spruce and beech) and NOx annual average map for the same year 2022. The ozone map of peak season average of maximum daily 8-hour means is presented for the first time. The trends in exposure estimates in the period 2005–2022 are summarized. The analysis for 2022 is based on the interpolation of the annual statistics of the 2022 observational data reported by the EEA member and cooperating countries and other voluntary reporting countries and stored in the Air Quality e-reporting database, complemented, when needed, with measurements from additional sources. The mapping method is the Regression – Interpolation – Merging Mapping (RIMM). It combines monitoring data, chemical transport model results and other supplementary data using linear regression model followed by kriging of its residuals (residual kriging). The paper presents the mapping results and gives an uncertainty analysis of the interpolated maps. It also presents concentration change in 2022 in comparison to the five-year average 2017-2021 using the difference maps and exposure estimates.
ETC/HE
2024