Found 2674 publications. Showing page 19 of 268:
Short-, medium-, and long-chain chlorinated paraffins (CPs) (SCCPs, MCCPs, and LCCPs) and dechloranes are chemicals of emerging concern; however, little is known of their bioaccumulative potential compared to legacy contaminants in marine mammals. Here, we analyzed SCCPs, MCCPs, LCCPs, 7 dechloranes, 4 emerging brominated flame retardants, and 64 legacy contaminants, including polychlorinated biphenyls (PCBs), in the blubber of 46 individual marine mammals, representing 10 species, from Norway. Dietary niche was modeled based on stable isotopes of nitrogen and carbon in the skin/muscle to assess the contaminant accumulation in relation to diet. SCCPs and dechlorane-602 were strongly positively correlated with legacy contaminants and highest in killer (Orcinus orca) and sperm (Physeter macrocephalus) whales (median SCCPs: 160 ng/g lw; 230 ng/g lw and median dechlorane-602: 3.8 ng/g lw; 2.0 ng/g lw, respectively). In contrast, MCCPs and LCCPs were only weakly correlated to recalcitrant legacy contaminants and were highest in common minke whales (Balaenoptera acutorostrata; median MCCPs: 480 ng/g lw and LCCPs: 240 ng/g lw). The total contaminant load in all species was dominated by PCBs and legacy chlorinated pesticides (63–98%), and MCCPs dominated the total CP load (42–68%, except 11% in the long-finned pilot whale Globicephala melas). Surprisingly, we found no relation between contaminant concentrations and dietary niche, suggesting that other large species differences may be masking effects of diet such as lifespan or biotransformation and elimination capacities. CP and dechlorane concentrations were higher than in other marine mammals from the (sub)Arctic, and they were present in a killer whale neonate, indicating bioaccumulative properties and a potential for maternal transfer in these predominantly unregulated chemicals.
2024
Surface warming in Svalbard may have led to increases in highly active ice-nucleating particles
The roles of Arctic aerosols as ice-nucleating particles remain poorly understood, even though their effects on cloud microphysics are crucial for assessing the climate sensitivity of Arctic mixed-phase clouds and predicting their response to Arctic warming. Here we present a full-year record of ice-nucleating particle concentrations over Svalbard, where surface warming has been anomalously faster than the Arctic average. While the variation of ice-nucleating particles active at around −30 °C was relatively small, those active at higher temperatures (i.e., highly active ice-nucleating particles) tended to increase exponentially with rising surface air temperatures when the surface air temperatures rose above 0 °C and snow/ice-free barren and vegetated areas appeared in Svalbard. The aerosol population relevant to their increase was largely characterized by dust and biological organic materials that likely originated from local/regional terrestrial sources. Our results suggest that highly active ice-nucleating particles could be actively released from Arctic natural sources in response to surface warming.
2024
Widespread Pesticide Distribution in the European Atmosphere Questions their Degradability in Air
Risk assessment of pesticide impacts on remote ecosystems makes use of model-estimated degradation in air. Recent studies suggest these degradation rates to be overestimated, questioning current pesticide regulation. Here, we investigated the concentrations of 76 pesticides in Europe at 29 rural, coastal, mountain, and polar sites during the agricultural application season. Overall, 58 pesticides were observed in the European atmosphere. Low spatial variation of 7 pesticides suggests continental-scale atmospheric dispersal. Based on concentrations in free tropospheric air and at Arctic sites, 22 pesticides were identified to be prone to long-range atmospheric transport, which included 15 substances approved for agricultural use in Europe and 7 banned ones. Comparison between concentrations at remote sites and those found at pesticide source areas suggests long atmospheric lifetimes of atrazine, cyprodinil, spiroxamine, tebuconazole, terbuthylazine, and thiacloprid. In general, our findings suggest that atmospheric transport and persistence of pesticides have been underestimated and that their risk assessment needs to be improved.
2024
2024
Active vegetation fires in south-eastern (SE) Europe resulted in a notable increase in the number concentration of aerosols and cloud condensation nuclei (CCN) particles at two high latitude locations—the SMEAR IV station in Kuopio, Finland, and the Zeppelin Observatory in Svalbard, high Arctic. During the fire episode aerosol hygroscopicity κ slightly increased at SMEAR IV and at the Zeppelin Observatory κ decreased. Despite increased κ in high CCN conditions at SMEAR IV, the aerosol activation diameter increased due to the decreased supersaturation with an increase in aerosol loading. In addition, at SMEAR IV during the fire episode, in situ measured cloud droplet number concentration (CDNC) increased by a factor of ∼7 as compared to non-fire periods which was in good agreement with the satellite observations (MODIS, Terra). Results from this study show the importance of SE European fires for cloud properties and radiative forcing in high latitudes.
2024
Marine litter and non-degradable plastic pollution is of global concern. Regular monitoring programs are being established to assess and understand the scale of this pollution. In Europe, the goal of the European Marine Strategy Framework Directive (MSFD) is to assess trends in Good Environmental Status and support large-scale actions at the regional level. Marine litter monitoring requires tailored sampling strategies, protocols and indicators, that align with specific objectives and are tailored for local or regional needs. In addition, the uneven spatial and temporal distributions of marine litter present a challenge when designing a statistically powerful monitoring program. In this paper, we critically review the existing marine litter monitoring programs in Europe. We discuss the main constraints, including environmental, logistical, scientific, and ethical factors. Additionally, we outline the critical gaps and shortcomings in monitoring MSFD beaches/shorelines, floating litter, seafloor litter, microplastics, and harm. Several priorities must be established to shape the future of monitoring within the MSFD. Recent developments in analytical approaches, including optimizing protocols and sampling strategies, gaining a better understanding of the spatiotemporal heterogeneity of litter and its implications for survey design and replication, and the inclusion of newly validated methodologies that have achieved sufficient technical readiness, must be considered. Although there are well-established methods for assessing beaches, floating and seafloor litter, it will be necessary to implement monitoring schemes for microplastics in sediments and invertebrates as robust analytical methods become available for targeting smaller particle size classes. Furthermore, the inclusion of indicators for entanglement and injury to marine organisms will have to be considered in the near future. Moreover, the following actions will enhance the effectiveness of monitoring efforts: (1) creating an inventory of accumulation areas and sources of specific types of litter (e.g., fishing gear), (2) monitoring riverine inputs of litter, (3) monitoring atmospheric inputs including microplastics, (4) accidental inputs during extreme weather events, and (5) studying how species at risk may be transported by litter. We provide recommendations to support long-term, effective, and well-coordinated marine litter monitoring within the MSFD to achieve a comprehensive and accurate understanding of marine litter in EU waters. This will allow the development of measures to mitigate the impacts of marine pollution and eventually to evaluate the success of the respective measures.
2024
Geopolitical events have shown to threaten European energy security in 2022. In Norway, accustomed to low energy prices, the southern part saw 4 times higher electricity prices in 2022 than long term average, whereas in the north, energy prices remained stable. This offers an opportunity to examine the effect of price on household energy consumption and PM2.5 emissions from the residential sector. In the south, electricity consumption went down by 10% while in the north it remained unchanged relative to expected values. While the documented correlation between increased electricity prices and reduced consumption is well-established, our study uniquely captures a substantial shift towards wood as an alternative energy source. In the south, wood for heating increased by approximately 40%, effectively replacing half of the electricity saved. This increase happened despite prices being curbed by strong government subsidies on electricity. Faced with higher energy costs in Europe, we simulate a scenario where consumers across Europe look for affordable energy. With gas and electricity prices predicted to remain well above long-term averages until 2030, biomass will be an attractive option. Our study shows how a shift can endanger Europe's Zero-Pollution strategy, and the need for initiatives targeting the reduction of residential biomass heating.
2024
Anthropogenic activities emit ~2,000 Mg y−1 of the toxic pollutant mercury (Hg) into the atmosphere, leading to long-range transport and deposition to remote ecosystems. Global anthropogenic emission inventories report increases in Northern Hemispheric (NH) Hg emissions during the last three decades, in contradiction with the observed decline in atmospheric Hg concentrations at NH measurement stations. Many factors can obscure the link between anthropogenic emissions and atmospheric Hg concentrations, including trends in the reemissions of previously released anthropogenic (“legacy”) Hg, atmospheric sink variability, and spatial heterogeneity of monitoring data. Here, we assess the observed trends in gaseous elemental mercury (Hg0) in the NH and apply biogeochemical box modeling and chemical transport modeling to understand the trend drivers. Using linear mixed effects modeling of observational data from 51 stations, we find negative Hg0 trends in most NH regions, with an overall trend for 2005 to 2020 of −0.011 ± 0.006 ng m−3 y−1 (±2 SD). In contrast to existing emission inventories, our modeling analysis suggests that annual NH anthropogenic emissions must have declined by at least 140 Mg between the years 2005 and 2020 to be consistent with observed trends. Faster declines in 95th percentile Hg0 values than median values in Europe, North America, and East Asian measurement stations corroborate that the likely cause is a decline in nearby anthropogenic emissions rather than background legacy reemissions. Our results are relevant for evaluating the effectiveness of the Minamata Convention on Mercury, demonstrating that existing emission inventories are incompatible with the observed Hg0 declines.
2024
This cross-cutting review focuses on the presence and impacts of per- and polyfluoroalkyl substances (PFAS) in the Arctic. Several PFAS undergo long-range transport via atmospheric (volatile polyfluorinated compounds) and oceanic pathways (perfluorinated alkyl acids, PFAAs), causing widespread contamination of the Arctic. Beyond targeting a few well-known PFAS, applying sum parameters, suspect and non-targeted screening are promising approaches to elucidate predominant sources, transport, and pathways of PFAS in the Arctic environment, wildlife, and humans, and establish their time-trends. Across wildlife species, concentrations were dominated by perfluorooctane sulfonic acid (PFOS), followed by perfluorononanoic acid (PFNA); highest concentrations were present in mammalian livers and bird eggs. Time trends were similar for East Greenland ringed seals (Pusa hispida) and polar bears (Ursus maritimus). In polar bears, PFOS concentrations increased from the 1980s to 2006, with a secondary peak in 2014–2021, while PFNA increased regularly in the Canadian and Greenlandic ringed seals and polar bear livers. Human time trends vary regionally (though lacking for the Russian Arctic), and to the extent local Arctic human populations rely on traditional wildlife diets, such as marine mammals. Arctic human cohort studies implied that several PFAAs are immunotoxic, carcinogenic or contribute to carcinogenicity, and affect the reproductive, endocrine and cardiometabolic systems. Physiological, endocrine, and reproductive effects linked to PFAS exposure were largely similar among humans, polar bears, and Arctic seabirds. For most polar bear subpopulations across the Arctic, modeled serum concentrations exceeded PFOS levels in human populations, several of which already exceeded the established immunotoxic thresholds for the most severe risk category. Data is typically limited to the western Arctic region and populations. Monitoring of legacy and novel PFAS across the entire Arctic region, combined with proactive community engagement and international restrictions on PFAS production remain critical to mitigate PFAS exposure and its health impacts in the Arctic.
2024
The FAIR principles as a key enabler to operationalize safe and sustainable by design approaches
Safe and sustainable development of chemicals, (advanced) materials, and products is at the heart of achieving a healthy future environment in line with the European Green Deal and the Chemicals Strategy for Sustainability. Recently, the Joint Research Center (JRC) of the European Commission (EC) developed the safe and sustainable by design (SSbD) framework for definition of criteria and evaluation procedure proposed to be established in Research and Innovation (R&I) activities. The framework aims to support the design of chemicals, materials and products that provide desirable functions (or services), while simultaneously minimizing the risk for harmful impacts to human health and the environment. While many industrial sectors already consider such aspects during R&I, the framework aims to harmonize safety and sustainability assessment across diverse sectors and innovation strategies to meet the mentioned overarching policy goals. A cornerstone to successfully implement and operationalize the SSbD framework lies in the availability of high-quality data and tools, and their interoperability, aspects which also play a key role in ensuring transparency and thereby trust in the assessment outcomes. Availability of data and tools depend on their machine-actionability in terms of findability, accessibility, interoperability, and reusability, in line with the FAIR principles. The principles were developed in order to harmonize digitalization across all data domains, supporting unanticipated data-driven “seamless” integration of information and generation of new knowledge. Here we discuss the essentiality of FAIR data and tools to operationalize SSbD providing views and examples of activities within the European Partnership for the Assessment of Risks from Chemicals (PARC). The discussion covers five areas previously brought up in relation to the SSbD framework, and which are highly dependent on implementation of the FAIR principles; (i) digitalization to leverage innovation towards a green transition; (ii) existing data sources and their interoperability; (iii) navigating SSbD with data from new scientific developments (iv) transparency and trust through automated assessment of data quality and uncertainty; and (v) “seamless” integration of SSbD tools.
2024