Found 2670 publications. Showing page 2 of 267:
Biomass burning emission analysis based on MODIS
We assessed the biomass burning (BB) smoke aerosol optical depth (AOD) simulations of 11 global models that participated in the AeroCom phase III BB emission experiment. By comparing multi-model simulations and satellite observations in the vicinity of fires over 13 regions globally, we (1) assess model-simulated BB AOD performance as an indication of smoke source–strength, (2) identify regions where the common emission dataset used by the models might underestimate or overestimate smoke sources, and (3) assess model diversity and identify underlying causes as much as possible. Using satellite-derived AOD snapshots to constrain source strength works best where BB smoke from active sources dominates background non-BB aerosol, such as in boreal forest regions and over South America and southern hemispheric Africa. The comparison is inconclusive where the total AOD is low, as in many agricultural burning areas, and where the background is high, such as parts of India and China. Many inter-model BB AOD differences can be traced to differences in values for the mass ratio of organic aerosol to organic carbon, the BB aerosol mass extinction efficiency, and the aerosol loss rate from each model. The results point to a need for increased numbers of available BB cases for study in some regions and especially to a need for more extensive regional-to-global-scale measurements of aerosol loss rates and of detailed particle microphysical and optical properties; this would both better constrain models and help distinguish BB from other aerosol types in satellite retrievals. More generally, there is the need for additional efforts at constraining aerosol source strength and other model attributes with multi-platform observations.
2025
Biomass burning emission estimation in the MODIS era: State-of-the-art and future directions
Accurate estimates of biomass burning (BB) emissions are of great importance worldwide due to the impacts of these emissions on human health, ecosystems, air quality, and climate. Atmospheric modeling efforts to represent these impacts require BB emissions as a key input. This paper is presented by the Biomass Burning Uncertainty: Reactions, Emissions and Dynamics (BBURNED) activity of the International Global Atmospheric Chemistry project and largely based on a workshop held in November 2023. The paper reviews 9 of the BB emissions datasets widely used by the atmospheric chemistry community, all of which rely heavily on Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations of fires scheduled to be discontinued at the end of 2025. In this time of transition away from MODIS to new fire observations, such as those from the Visible Infrared Imaging Radiometer Suite (VIIRS) satellite instruments, we summarize the contemporary status of BB emissions estimation and provide recommendations on future developments. Development of global BB emissions datasets depends on vegetation datasets, emission factors, and assumptions of fire persistence and phase, all of which are highly uncertain with high degrees of variability and complexity and are continually evolving areas of research. As a result, BB emissions datasets can have differences on the order of factor 2–3, and no single dataset stands out as the best for all regions, species, and times. We summarize the methodologies and differences between BB emissions datasets. The workshop identified 5 key recommendations for future research directions for estimating BB emissions and quantifying the associated uncertainties: development and uptake of satellite burned area products from VIIRS and other instruments; mapping of fine scale heterogeneity in fuel type and condition; identification of spurious signal detections and information gaps in satellite fire radiative power products; regional modeling studies and comparison against existing datasets; and representation of the diurnal cycle and plume rise in BB emissions.
2025
A global assemblage of regional prescribed burn records — GlobalRx
Abstract Prescribed burning (RxB) is a land management tool used widely for reducing wildfire hazard, restoring biodiversity, and managing natural resources. However, RxB can only be carried out safely and effectively under certain seasonal or weather conditions. Under climate change, shifts in the frequency and timing of these weather conditions are expected but analyses of climate change impacts have been restricted to select few regions partly due to a paucity of RxB records at global scale. Here, we introduce GlobalRx, a dataset including 204,517 RxB records from 1979–2023, covering 16 countries and 209 terrestrial ecoregions. For each record, we add a comprehensive suite of meteorological variables that are regularly used in RxB prescriptions by fire management agencies, such as temperature, humidity, and wind speed. We also characterise the environmental setting of each RxB, such as land cover and protected area status. GlobalRx enables the bioclimatic range of conditions suitable for RxB to be defined regionally, thus unlocking new potential to study shifting opportunities for RxB planning and implementation under future climate.
2025
A worldwide aerosol phenomenology: Elemental and organic carbon in PM2.5 and PM10
Elemental carbon (EC), organic carbon (OC), and particulate matter (PM) concentrations in the inhalable (PM10) and fine (PM2.5) size fractions are measured worldwide, albeit with different analytical methods. These measurements from many researchers were collected and analyzed for Africa, America, Asia, and Europe for 2012–2019. EC/PM, OC/PM, and OC/EC ratios were examined based on region, site type, and season to infer potential sources and impacts. These analyses demonstrate that carbonaceous materials are important PM constituents throughout the world. Mean EC/PM ratios were lowest in PM10 in Sahelian Africa and Europe (∼0.01), highest (>0.07) in PM2.5 at urban sites in North America, South America, and Japan. Mean OC/PM ratios were lowest in PM10 in the Sahel (∼0.06) and in PM2.5 in China and Thailand (0.10), and highest in central and eastern Europe (∼0.3) and North America (∼0.4). OC/EC ratios were elevated in western and northern Europe, and at regional background sites in North America. EC/PM increased with PM10 in Thailand, while OC/PM increased with higher PM mass in Thailand, India, and North America, highlighting the specific contribution of carbonaceous aerosols to PM pollution in these regions. At European and North American background sites, OC/EC ratios increased with PM mass. Higher OC/EC ratios in dry periods indicate influence of wildfires, prescribed burns, and secondary aerosol formation. Elevated wintertime EC/PM ratios coincide with residential heating in temperate climate zones.
2025
Abstract In this study, we evaluated the genomic stability of oral mucosal epithelial cells (OMECs) cultured in complex media (COM) and xenobiotic-free media (XF) to assess their potential clinical application for limbal stem cell deficiency (LSCD) treatments. OMECs serve as a promising autologous cell source for bilateral LSCD treatment, offering an alternative to limbal epithelial cells (LECs). However, genomic integrity is crucial to ensure the long-term success of transplanted cells. We performed micronucleus (MNi) tests and comet assays to compare DNA damage in OMECs cultured in both media types. The results indicated no significant differences in cell morphology, viability, or size between the two conditions. The MNi frequency was similar, with 5.67 and 6.17 MNi per 1,000 cells in COM and XF conditions, respectively. Comet assay results showed low levels of strand breaks (SBs) and oxidized DNA lesions in both media, with XF showing a slightly lower, albeit statistically insignificant, percentage of tail DNA for net Fpg-sensitive sites. Our findings suggest that OMECs can be effectively cultivated in either COM or XF media without inducing significant DNA damage, supporting the potential use of XF media in clinical settings to reduce contamination risks. This study underscores the importance of genomic stability in cultured cells for ocular surface transplantation, contributing valuable insights into optimizing culture conditions for safer and more effective clinical applications.
2025
Modelling Arctic lower-tropospheric ozone: processes controlling seasonal variations
Abstract. Previous assessments on modelling Arctic tropospheric ozone (O3) have shown that most atmospheric models continue to experience difficulties in simulating tropospheric O3 in the Arctic, particularly in capturing the seasonal variations at coastal sites, primarily attributed to the lack of representation of surface bromine chemistry in the Arctic. In this study, two independent chemical transport models (CTMs), DEHM (Danish Eulerian Hemispheric Model) and GEM-MACH (Global Environmental Multi-scale – Modelling Air quality and Chemistry), were used to simulate Arctic lower-tropospheric O3 for the year 2015 at considerably higher horizontal resolutions (25 and 15 km, respectively) than the large-scale models in the previous assessments. Both models include bromine chemistry but with different mechanistic representations of bromine sources from snow- and ice-covered polar regions: a blowing-snow bromine source mechanism in DEHM and a snowpack bromine source mechanism in GEM-MACH. Model results were compared with a suite of observations in the Arctic, including hourly observations from surface sites and mobile platforms (buoys and ships) and ozonesonde profiles, to evaluate models' ability to simulate Arctic lower-tropospheric O3, particularly in capturing the seasonal variations and the key processes controlling these variations. Both models are found to behave quite similarly outside the spring period and are able to capture the observed overall surface O3 seasonal cycle and synoptic-scale variabilities, as well as the O3 vertical profiles in the Arctic. GEM-MACH (with the snowpack bromine source mechanism) was able to simulate most of the observed springtime ozone depletion events (ODEs) at the coastal and buoy sites well, while DEHM (with the blowing-snow bromine source mechanism) simulated much fewer ODEs. The present study demonstrates that the springtime O3 depletion process plays a central role in driving the surface O3 seasonal cycle in central Arctic, and that the bromine-mediated ODEs, while occurring most notably within the lowest few hundred metres of air above the Arctic Ocean, can induce a 5 %–7 % of loss in the total pan-Arctic tropospheric O3 burden during springtime. The model simulations also showed an overall enhancement in the pan-Arctic O3 concentration due to northern boreal wildfire emissions in summer 2015; the enhancement is more significant at higher altitudes. Higher O3 excess ratios (ΔO3/ΔCO) found aloft compared to near the surface indicate greater photochemical O3 production efficiency at higher altitudes in fire-impacted air masses. The model simulations further indicated an enhancement in NOy in the Arctic due to wildfires; a large portion of NOy produced from the wildfire emissions is found in the form of PAN that is transported to the Arctic, particularly at higher altitudes, potentially contributing to O3 production there.
2025
2025
Fungus-farming termites cultivate a Termitomyces fungus monoculture in enclosed gardens (combs) free of other fungi, except during colony declines, where Pseudoxylaria spp. stowaway fungi appear and take over combs. Here, we determined Volatile Organic Compounds (VOCs) of healthy Macrotermes bellicosus nests in nature and VOC changes associated with comb decay during Pseudoxylaria takeover. We identified 443 VOCs and unique volatilomes across samples and nest volatilomes that were mainly composed of fungus comb VOCs with termite contributions. Few comb VOCs were linked to chemical changes during decay, but longipinocarvone and longiverbenone were only emitted during comb decay. These terpenes may be involved in Termitomyces defence against antagonistic fungi or in fungus-termite signalling of comb state. Both comb and Pseudoxylaria biomass volatilomes contained many VOCs with antimicrobial activity that may serve in maintaining healthy Termitomyces monocultures or aid in the antagonistic takeover by Pseudoxylaria during colony decline. We further observed a series of oxylipins with known functions in the regulation of fungus germination, growth, and secondary metabolite production. Our volatilome map of the fungus-farming termite symbiosis provides new insights into the chemistry regulating complex interactions and serves as a valuable guide for future work on the roles of VOCs in symbioses.
2025
2025
Per- and polyfluoroalkyl substances (PFAS) have gained significant global attention due to their extensive industrial use and harmful effects on various organisms. Among these, perfluoroalkyl acids (PFAAs) are well-studied, but their diverse precursors remain challenging to monitor. The Total Oxidizable Precursor (TOP) assay offers a powerful approach to converting these precursors into detectable PFAAs. In this study, the TOP assay was applied to samples from the East Asian-Australian Flyway, a critical migratory route for millions of shorebirds. Samples included shellfish from China's coastal mudflats, key stopover sites for these birds, and blood and liver samples from shorebirds overwintering in Australia. The results showed a substantial increase in perfluorocarboxylic acids (PFCAs) across all sample types following the TOP assay, with the most significant increases in shorebird livers (Sum PFCAs increased by 18,156 %). Intriguingly, the assay also revealed unexpected increases in perfluorosulfonic acids (PFSAs), suggesting the presence of unidentified precursors. These findings highlight the need for further research into these unknown precursors, their sources, and their ecological impacts on shorebirds, other wildlife, and potential human exposure. This study also provides crucial insights into the TOP assay’s strengths and limitations in studying PFAS precursor dynamics in biological matrices.
2025