Skip to content
  • Submit

  • Category

  • Sort by

  • Per page

Found 2698 publications. Showing page 27 of 270:

Publication  
Year  
Category

Understanding the role of cities and citizen science in advancing sustainable development goals across Europe: insights from European research framework projects

Liu, Hai Ying; Ahmed, Sohel; Passani, Antonella; Bartonova, Alena

This paper examines the potential impact of citizen science on achieving SDGs in cities. The analysis focuses on projects funded through the European Research Framework Programmes that utilize citizen science practices to involve cities and citizens in addressing sustainability issues. We analyzed a total of 44 projects active between 2016 and 2027, encompassing both ongoing and completed projects. Instead of relying solely on existing literature, we utilized a project database called CORDIS to gather project information. This approach allowed us to develop a comprehensive framework by utilizing uniformly classified data from the database, which is not typically available in literature. Using a four-stage framework analysis method, we assessed the projects' thematic areas, goals, types of solution promoted or tested to address sustainability challenges, methodologies employed, and the impacts achieved or expected. Through this analysis, we identified successful collaborations between citizen science and cities, showcasing examples of effective practice where citizens and cities co-created and tested solutions that contribute to SDGs. This highlights the active role that citizens, as participants or citizen scientists, play in the transition toward SDGs. This study focuses on more than 100 European cities that have been involved in EU-funded research projects implementing and planning to conduct citizen science activities, which directly and indirectly link to various SDGs. Our findings reveal that citizen science practices in cities predominantly address SDG3 (Good health and wellbeing), 11 (Sustainable cities and communities), and 13 (Climate action). Cities that engage citizens in co-creating solutions can enhance their capacity to improve quality of life and reduce climate and environmental impacts. Citizen engagement at the city and community levels can bolster efforts toward achieving SDGs and monitoring progress on a city-wide scale. However, to fully integrate citizen science and its contribution to cities in achieving SDGs, further research is needed to align the SDGs formulated at the national level with those at the city level. This entails exploring how citizen science can align with SDGs indicators and the quantification of SDG targets. Such efforts will facilitate the mainstreaming of citizen science and its potential to drive progress toward SDGs in cities.

2023

Semidiurnal nonmigrating tides in low-latitude lower thermospheric NO: A climatology based on 20 years of Odin/SMR measurements

Grieco, Francesco; Orsolini, Yvan Joseph Georges Emile G.; Pérot, Kristell

The Sub-Millimetre Radiometer (SMR) on board the Odin satellite provides almost 20 years of nitric oxide (NO) measurements in the mesosphere and lower thermosphere (MLT) at equatorial crossing local solar times (LSTs) of 6 AM and 6 PM. In this study, we use Odin/SMR observations to estimate how lower thermospheric NO mixing ratios at low latitudes are affected by solar nonmigrating tides. Most of the previous studies based on satellite data have focused on the signatures of diurnal tides in the MLT and above, while we concentrate here on nonmigrating semidiurnal tides. To study the contribution of these tides to NO mixing ratio variations, we average pairs of NO measurements along ascending and descending orbital tracks at 107 km altitude over latitudes between −40°and +40°. We consider monthly climatologies of these pair-averages and analyse residuals with respect to their zonal mean. In this way, it is possible to study the effect of nonmigrating even-numbered tidal components, albeit there is a non-tidal component arising largely from quasi-stationary planetary waves. Spectral wave amplitudes are extracted using a Fourier transform as function of (apparent) zonal wavenumber with a focus around −30°, −20°and 30°latitudes. From our analysis, it appears that the semidiurnal (apparent) zonal wavenumber 4 arising from the SW6 and SE2 tides is dominant close to the equator (e.g., at −20°), except during some boreal summer months (June, July, August). On the other hand, wave-1 plays a more prominent role at subtropical latitudes, especially in the southern hemisphere, where it surpasses wave-4 during 7 months (March and May-to-October) at −30°. There is little observational evidence to date documenting the presence of the semidiurnal nonmigrating tides in NO in the low-latitude MLT. Our results hence provide one of the first evidences of the climatological signature of these tides in NO, in an altitude range that remains poorly observed.

2023

State of the Climate in 2022: The Arctic

Moon, Twila A.; Thoman, Richard L.; Druckenmiller, Matthew L.; Ahmasuk, Brandon; Backensto, Stacia A.; Ballinger, Thomas J.; Benestad, Rasmus; Berner, Logan T.; Bernhard, Germar H.; Bhatt, Uma S.; Bigalke, Siiri; Bjerke, Jarle W.; Brettschneide, Brian; Christiansen, Hanne H.; Cohen, Judah L.; Dechame, Bertrand; Derksen, Chris; Divine, Dmitry V; Jensen, Caroline Drost; Chereque, Aleksandra Elias; Epstein, Howard E.; Fausto, Robert S.; Fettweis, Xavier; Fioletov, Vitali E.; Forbes, Bruce C.; Frost, Gerald V.; Gerland, Sebastian; Goetz, Scott J.; Grooß, Jens-Uwe; Hanna, Edward; Hanssen-Bauer, Inger; Hendricks, Stefan; Holmes, Robert M.; Ialongo, Iolanda; Isaksen, Ketil; Johnsen, Bjørn; Jones, Timothy; Kaler, Robb S.A.; Kaleschke, Lars; Kim, Seong-Joong; Labe, Zachary M.; Lader, Rick; Lakkala, Kaisa; Lara, Mark J.; Lindsey, Jackie; Loomis, Bryant D.; Luojus, Kari; Macander, Matthew J.; Mamen, Jostein; Mankoff, Ken D.; Manney, Gloria L.; McAfee, Stephanie A.; McClelland, James W.; Meier, Walter N.; Moore, G. W. K.; Mote, Thomas L.; Mudryk, Lawrence; Müller, Rolf; Nyland, Kelsey E.; Overland, James E.; Parrish, Julia K.; Perovich, Donald K.; Petersen, Guðrún Nína; Petty, Alek; Phoenix, Gareth K.; Poinar, Kristin; Rantanen, Mika; Ricker, Robert; Romanovsky, Vladimir E.; Serbin, Shawn P.; Serreze, Mark C.; Sheffield, Gay; Shiklomanov, Alexander I.; Shiklomanov, Nikolay I.; Smith, Sharon L.; Spencer, Robert G. M.; Streletskiy, Dmitry A.; Suslova, Anya; Svendby, Tove Marit; Tank, Suzanne E.; Tedesco, Marco; Tian-Kunze, Xiangshan; Timmermans, Mary-Louise; Tømmervik, Hans; Tretiakov, Mikhail; Walker, Donald A.; Walsh, John E.; Wang, Muyin; Webster, Melinda; Wehrlé, Adrian; Yang, Daqing; Zolkos, Scott

2023

Phthalate contamination in marine mammals off the Norwegian coast

Andvik, Clare; Bories, Pierre; Harju, Mikael; Borgå, Katrine; Jourdain, Eve; Karoliussen, Richard; Rikardsen, Audun; Routti, Heli; Blévin, Pierre

Phthalates are used in plastics, found throughout the marine environment and have the potential to cause adverse health effects. In the present study, we quantified blubber concentrations of 11 phthalates in 16 samples from stranded and/or free-living marine mammals from the Norwegian coast: the killer whale (Orcinus orca), sperm whale (Physeter macrocephalus), long-finned pilot whale (Globicephala melas), white-beaked dolphin (Lagenorhynchus albirostris), harbour porpoise (Phocoena phocoena), and harbour seal (Phoca vitulina). Five compounds were detected across all samples: benzyl butyl phthalate (BBP; in 50 % of samples), bis(2-ethylhexyl) phthalate (DEHP; 33 %), diisononyl phthalate (DiNP; 33 %), diisobutyl phthalate (DiBP; 19 %), and dioctyl phthalate (DOP; 13 %). Overall, the most contaminated individual was the white-beaked dolphin, whilst the lowest concentrations were measured in the killer whale, sperm whale and long-finned pilot whale. We found no phthalates in the neonate killer whale. The present study is important for future monitoring and management of these toxic compounds.

2023

What do we know about the production and release of persistent organic pollutants in the global environment?

Li, Li; Cheng, Chengkang; Li, Dingsheng; Breivik, Knut; Abbasi, Golnoush; Li, Yi-Fan

Information on the global production and environmental releases of persistent organic pollutants (POPs) is of critical importance for regulating and eliminating these chemical substances of worldwide environmental and health concerns. Here, we conduct an extensive literature review to collect and curate quantitative information on the historical global production and multimedia environmental releases of 25 intentionally produced POPs. Our assembled data indicate that as of 2020, a cumulative total of 31 306 kilotonnes (kt) of the 25 POPs had been synthesized and commercialized worldwide, resulting in cumulative releases of 20 348 kt into the global environment. As of 2020, short-chain chlorinated paraffins were the most produced POP, with a historical global cumulative tonnage amounting to 8795 kt, whereas α-hexachlorocyclohexane (HCH) had the largest historical global cumulative environmental releases of 6567 kt among these 25 POPs. The 1970s witnessed the peak in the annual global production of the 25 investigated POPs. The United States and Europe used to be the hotspots of environmental releases of the 25 investigated POPs, notably in the 1960s and 1970s. By contrast, global environmental releases occurred primarily in China in the 2000s–2010s. Preliminary efforts are also made to integrate the production volume information with “hazard” attributes (persistence, bioaccumulation, toxicity, and long-range transport potential) in the evaluation of potential environmental impacts of the 25 POPs. The results show that dichlorodiphenyltrichloroethane (DDT) and polychlorinated biphenyls (PCBs) are potentially associated with higher environmental impacts than other POPs because they are among the top rankings in both the global cumulative production and hazard indicators. This work for the first time reveals the astonishing magnitudes of POP production and environmental releases in contemporary human history. It also underscores the importance of tonnage information in assessments of POPs, POP candidates, and other chemicals of emerging concern.

2023

Circular economy for aquatic food systems: insights from a multiscale phosphorus flow analysis in Norway

Pandit, Avijit Vinayak; Dittrich, Nils Maximilian; Strand, Andrea Viken; Lozach, Loïs; Hernandez, Miguel Las Heras; Reitan, Kjell Inge; Mueller, Daniel Beat

As wild-caught fish become scarce, feed ingredients for farming fish, such as salmon, are increasingly sourced from agricultural plants that depend on mineral fertilizers. Since these fish are naturally carnivorous, they have difficulty digesting the phosphorus in plant-based feed. So additional phosphorus supplements are added to the feed, resulting in a disproportionate increase in mineral phosphorus use and emission. Aquatic food production is increasingly relying on agriculture and mineral phosphorus resources. The feed surplus and the excreta are seldom collected and recycled, leading to a massive loss of nutrients to water bodies and the seafloor, resulting in local risk for eutrophication. Norway currently produces more than half of the world’s Atlantic salmon, and it is set to increase production from currently 1.5 to 5 Mt. in 2050. This has large implications for feed supply and emissions globally. There is a lack of studies that analyze the phosphorus system in aquatic food production at a sufficient spatial and temporal granularity to effectively inform interventions for a more circular use of phosphorus. Here, we present a multi-scale phosphorus flow analysis at monthly resolution ranging between 2005 and 2021 for aquatic food production in Norway and quantitatively discuss the effectiveness of alternative strategies for improving resource efficiency. The results indicate that P emissions from aquaculture have nearly doubled in the period between 2005 and 2021. The P use efficiency (PUE) in Norwegian aquaculture was 19% in 2021. The addition of phytase to the feed could improve the PUE by 8% by reducing P supplements and emissions by 7 kt/y. The use of Integrated Multi-Trophic Aquaculture close to fish farming sites could absorb emissions by 4 kt/y by creating new marine food products. Sludge collection systems could reduce P emissions by 4 to 11 kt/y, depending on the technology. Using the sludge in local agriculture would exacerbate the current P accumulation in soils close to the coastline, given that the animal density in this region is already high. Hence, a large and sophisticated processing infrastructure will be needed to create transportable, high-quality secondary fertilizers for effective sludge recycling in regions with a P deficit.

2023

Arctic Tropospheric Ozone Trends

Law, Kathy S.; Hjorth, Jens Liengaard; Pernov, Jakob B.; Whaley, Cynthia; Skov, Henrik; Coen, Martine Collaud; Langner, Joakim; Arnold, Stephen R.; Tarasick, David; Christensen, Jesper; Deushi, Makoto; Effertz, Peter; Faluvegi, Greg; Gauss, Michael; Im, Ulas; Oshima, Naga; Petropavlovskikh, Irina; Plummer, David; Tsigaridis, Kostas; Tsyro, Svetlana; Solberg, Sverre; Turnock, Stephen

Observed trends in tropospheric ozone, an important air pollutant and short-lived climate forcer (SLCF), are estimated using available surface and ozonesonde profile data for 1993–2019, using a coherent methodology, and compared to modeled trends (1995–2015) from the Arctic Monitoring Assessment Program SLCF 2021 assessment. Increases in observed surface ozone at Arctic coastal sites, notably during winter, and concurrent decreasing trends in surface carbon monoxide, are generally captured by multi-model median trends. Wintertime increases are also estimated in the free troposphere at most Arctic sites, with decreases during spring months. Winter trends tend to be overestimated by the multi-model medians. Springtime surface ozone increases in northern coastal Alaska are not simulated while negative springtime trends in northern Scandinavia are not always reproduced. Possible reasons for observed changes and model performance are discussed including decreasing precursor emissions, changing ozone dry deposition, and variability in large-scale meteorology.

2023

A rise in HFC-23 emissions from eastern Asia since 2015

Park, Hyeri; Kim, Jooil; Choi, Haklim; Geum, Sohyeon; Kim, Yeaseul; Thompson, Rona Louise; Mühle, Jens; Salameh, Peter K.; Harth, Christina M.; Stanley, Kieran M.; O'Doherty, Simon; Fraser, Paul J.; Simmonds, Peter G.; Krummel, Paul B.; Weiss, Ray F.; Prinn, Ronald G.; Park, Sunyoung

Trifluoromethane (CHF3, HFC-23), one of the most potent greenhouse gases among hydrofluorocarbons (HFCs), is mainly emitted to the atmosphere as a by-product in the production of the ozone-depleting legacy refrigerant and chemical feedstock chlorodifluoromethane (CHClF2, HCFC-22). A recent study on atmospheric observation-based global HFC-23 emissions (top-down estimates) showed significant discrepancies over 2014–2017 between the increase in the observation-derived emissions and the 87 % emission reduction expected from capture and destruction processes of HFC-23 at HCFC-22 production facilities implemented by national phase-out plans (bottom-up emission estimates) (Stanley et al., 2020). However, the actual regions responsible for the increased emissions were not identified. Here, we estimate the regional top-down emissions of HFC-23 for eastern Asia based on in situ measurements at Gosan, South Korea, and show that the HFC-23 emissions from eastern China have increased from 5.0±0.4 Gg yr−1 in 2008 to 9.5±1.0 Gg yr−1 in 2019. The continuous rise since 2015 was contrary to the large emissions reduction reported under the Chinese hydrochlorofluorocarbons production phase-out management plan (HPPMP). The cumulative difference between top-down and bottom-up estimates for 2015–2019 in eastern China was  Gg, which accounts for 47±11 % of the global mismatch. Our analysis based on HCFC-22 production information suggests the HFC-23 emissions rise in eastern China is more likely associated with known HCFC-22 production facilities rather than the existence of unreported, unknown HCFC-22 production, and thus observed discrepancies between top-down and bottom-up emissions could be attributed to unsuccessful factory-level HFC-23 abatement and inaccurate quantification of emission reductions.

2023

The turbulent future brings a breath of fresh air

Stjern, Camilla Weum; Hodnebrog, Øivind; Myhre, Gunnar; Pisso, Ignacio

Ventilation of health hazardous aerosol pollution within the planetary boundary layer (PBL) – the lowest layer of the atmosphere – is dependent upon turbulent mixing, which again is closely linked to the height of the PBL. Here we show that emissions of both CO2 and absorbing aerosols such as black carbon influence the number of severe air pollution episodes through impacts on turbulence and PBL height. While absorbing aerosols cause increased boundary layer stability and reduced turbulence through atmospheric heating, CO2 has the opposite effect over land through surface warming. In future scenarios with increasing CO2 concentrations and reduced aerosol emissions, we find that around 10% of the world’s population currently living in regions with high pollution levels are likely to experience a particularly strong increase in turbulence and PBL height, and thus a reduction in intense pollution events. Our results highlight how these boundary layer processes provide an added positive impact of black carbon mitigation to human health.

2023

Evaluation of meso- and microplastic ingestion by the northern fulmar through a non-lethal sampling method

Collard, France; Strøm, Hallvard; Fayet, Marie-Océane; Gudmundsson, Fannar Theyr; Herzke, Dorte; Hotvedt, Ådne; Løchen, Arja; Malherbe, Cédric; Eppe, Gauthier; Gabrielsen, Geir W.

An increasing number of organisms from the polar regions are reported contaminated by plastic. Rarely a non-killing sampling method is used. In this study we wanted to assess plastic levels using stomach flushing and evaluate the method suitability for further research and monitoring. The stomach of 22 fulmars from Bjørnøya, Svalbard, were flushed with water in the field. On return to the laboratory, the regurgitated content was digested using potassium hydroxide. The extracted plastics were visually characterised and analysed with spectroscopy. Only three birds had plastics in their stomach, totaling 36 particles, most of them microplastics (< 5 mm). The plastic burdens are much lower than previously reported in Svalbard. The stomach flushing is assumed not to allow the collection of the gizzard content. This is a major limitation as most of the plastics accumulate in the fulmar's gizzard. However, the method is still useful for studies investigating plastic ingestion dynamics, allowing to sample the same individuals over time.

2023

Publication
Year
Category