Found 2533 publications. Showing page 31 of 254:
Electrification of residential heating and investment in building energy efficiency are central pillars of many national strategies to reduce carbon emissions from the built environment sector. Ireland has a strong dependence on oil use for central heating and a substantial share of homes still using solid fuels. The current national strategy calls for the retrofitting of 400,000 home heating systems with heat pumps by 2030, principally replacing oil fired heating systems. Displacing natural gas, oil and solid fuel boilers with heat pumps will have a favourable impact on climate outcomes. However, the impact on air pollutant outcomes is far more favourable when solid fuels are replaced, and the positive impact on ambient air quality is much enhanced where concentrated clusters of solid-fuel use are targeted. This research spatially analyses emissions and air pollutant concentration outcomes for both targeted and non-targeted deployments of heat pumps and shows that a focused deployment of just 3% of the national heat pump target on solid-fuel homes could offer similar progress on climate goals but with a substantial impact in terms of reducing air pollution hot spots. For the Irish residential heating season (October–March), the targeted solid fuel scenario delivers average PM2.5 concentration decreases of 20–34%. This paper shows that these targeted communities are often in areas of relative deprivation, and as such, direct support for fabric retrofitting and heat pump technology installation offers the potential to simultaneously advance climate, air and just transition policy ambitions.
Elsevier
2022
Pharmacokinetics of PEGylated Gold Nanoparticles: In Vitro—In Vivo Correlation
Data suitable for assembling a physiologically-based pharmacokinetic (PBPK) model for nanoparticles (NPs) remain relatively scarce. Therefore, there is a trend in extrapolating the results of in vitro and in silico studies to in vivo nanoparticle hazard and risk assessment. To evaluate the reliability of such approach, a pharmacokinetic study was performed using the same polyethylene glycol-coated gold nanoparticles (PEG-AuNPs) in vitro and in vivo. As in vitro models, human cell lines TH1, A549, Hep G2, and 16HBE were employed. The in vivo PEG-AuNP biodistribution was assessed in rats. The internalization and exclusion of PEG-AuNPs in vitro were modeled as first-order rate processes with the partition coefficient describing the equilibrium distribution. The pharmacokinetic parameters were obtained by fitting the model to the in vitro data and subsequently used for PBPK simulation in vivo. Notable differences were observed in the internalized amount of Au in individual cell lines compared to the corresponding tissues in vivo, with the highest found for renal TH1 cells and kidneys. The main reason for these discrepancies is the absence of natural barriers in the in vitro conditions. Therefore, caution should be exercised when extrapolating in vitro data to predict the in vivo NP burden and response to exposure.
MDPI
2022
Acquired drug resistance and metastasis in breast cancer (BC) are coupled with epigenetic deregulation of gene expression. Epigenetic drugs, aiming to reverse these aberrant transcriptional patterns and sensitize cancer cells to other therapies, provide a new treatment strategy for drug-resistant tumors. Here we investigated the ability of DNA methyltransferase (DNMT) inhibitor decitabine (DAC) to increase the sensitivity of BC cells to anthracycline antibiotic doxorubicin (DOX). Three cell lines representing different molecular BC subtypes, JIMT-1, MDA-MB-231 and T-47D, were used to evaluate the synergy of sequential DAC + DOX treatment in vitro. The cytotoxicity, genotoxicity, apoptosis, and migration capacity were tested in 2D and 3D cultures. Moreover, genome-wide DNA methylation and transcriptomic analyses were employed to understand the differences underlying DAC responsiveness. The ability of DAC to sensitize trastuzumab-resistant HER2-positive JIMT-1 cells to DOX was examined in vivo in an orthotopic xenograft mouse model. DAC and DOX synergistic effect was identified in all tested cell lines, with JIMT-1 cells being most sensitive to DAC. Based on the whole-genome data, we assume that the aggressive behavior of JIMT-1 cells can be related to the enrichment of epithelial-to-mesenchymal transition and stemness-associated pathways in this cell line. The four-week DAC + DOX sequential administration significantly reduced the tumor growth, DNMT1 expression, and global DNA methylation in xenograft tissues. The efficacy of combination therapy was comparable to effect of pegylated liposomal DOX, used exclusively for the treatment of metastatic BC. This work demonstrates the potential of epigenetic drugs to modulate cancer cells' sensitivity to other forms of anticancer therapy.
Elsevier
2022
The modified Target Diagram (MTD) was developed to evaluate the performance of low-cost sensors (LCS) for air quality monitoring in comparison with reference methods by reporting relative expanded uncertainty and its contributors. An MTD provides several pieces of information, including compliance with regulation, sources of error and how to diminish them, completeness and validity of LCS calibration etc. It allows the user to examine the effect of selecting different regression types and residual fitting on the LCS measurement uncertainty. The ordinary least squared regression with fitted residuals and dynamic between reference analyser uncertainty rather than constant ones yielded more realistic LCS measurement uncertainty compared to other options. The MTD is a fast visual tool to extract several pieces of information on evaluation of any candidate method against reference method.
Elsevier
2022
Royal Society of Chemistry (RSC)
2022
Machine learning-based stocks and flows modeling of road infrastructure
This paper introduces a new method to account for the stocks and flows of road infrastructure at the national level based on material flow accounting (MFA). The proposed method closes some of the current shortcomings in road infrastructures that were identified through MFA: (1) the insufficient implementation of prospective analysis, (2) heavy use of archetypes as a way to represent road infrastructure, (3) inadequate attention to the inclusion of dissipative flows, and (4) limited coverage of the uncertainties. The proposed dynamic bottom-up MFA method was tested on the Norwegian road network to estimate and predict the material stocks and flows between 1980 and 2050. Here, a supervised machine learning model was introduced to estimate the road infrastructure instead of archetypical mapping of different roads. The dissipation of materials from the road infrastructure based on tire–pavement interaction was incorporated. Moreover, this study utilizes iterative classified and regression trees, lifetime distributions, randomized material intensities, and sensitivity analyses to quantify the uncertainties.
John Wiley & Sons
2022
Temporal trends of industrial organic contaminants can show how environmental burdens respond to changes in production, regulation, and other anthropogenic and environmental factors. Numerous studies have documented such trends from the Northern Hemisphere, while there is very limited data in the literature from sub-Saharan Africa. We hypothesized that the temporal trends of legacy and contemporary industrial contaminants in sub-Saharan Africa could greatly differ from the regions in which many of these chemicals were initially produced and more extensively used. For this purpose, a dated sediment core covering six decades from a floodplain system in urban Dar es Salaam, Tanzania, was analysed. The samples were analysed for selected legacy persistent organic pollutants (POPs) [polychlorinated biphenyls (PCBs) and polybrominated biphenyl ethers (PBDEs)] and chemicals of emerging concern (CECs) [alternative brominated flame retardants (aBFRs), chlorinated paraffins (CPs), and dechloranes]. All groups of chemicals showed a steep increase in concentrations towards the uppermost sediment layers reflecting the more recent years. Concentrations of the individual compound groups in surface sediment were found in the order CPs >> aBFRs ∼ ∑25PBDEs > dechloranes ∼ ∑32PCBs. Time trends for the individual compounds and compound groups differed, with ∑32PCBs showing presence in sediments since at least the early 1960s, while some CECs first occurred in sediments corresponding to the last decade. Investigations into potential drivers for the observed trends showed that socioeconomic factors related to growth in population, economy, and waste generation have contributed to increasing concentrations of PBDEs, aBFRs, CPs, and Dechlorane Plus. Further monitoring of temporal trends of industrial organic contaminants in urban areas in the Global South is recommended.
Frontiers Media S.A.
2022
2022
2022